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1. Introduction
Landslides are one of the most devastating natural 

hazards in mountainous terrains. Although the action 
of	gravity	is	the	primary	driving	force	(Gorsevski	et	al.	
2006), landslides are also aggravated by human activi-
ties	such	as	mining,	agriculture,	and	forestry	operations.	
With	respect	to	forestry	operations	(timber	harvesting	
and	road	construction	activities),	 landslide	often	in-
creases with long-term consequences and has been re-
ported	worldwide	(e.g.,	Sessions	et	al.	1987,	Duncan	et	
al.	1987,	Larsen	and	Parks	1997,	Allison	et	al.	2004).

When damaging landslides occur on forestlands, 
it	is	not	unusual	to	hear	appeals	for	a	broad	ban	on	
forestry	operations.	However,	such	a	ban	would	be	
very costly to many forest landowners and it would 
impact	their	contributions	to	state	and	local	econo-
mies.	Therefore,	apart	from	regular	hazard	reduction	
plans,	landslide	susceptibility	(LS)	assessments	should	
also	be	developed	and	implemented	for	the	safety	in	
forestry	operations.	Landslide	hazard	reduction	plans,	
which are generated as the site is handed over to a 
contractor,	are	important	tools	to	ensure	everybody	
understands	how	to	deal	with	different	levels	of	LS	
across	the	working	site.

In	the	Caspian	Forest	in	northern	Iran,	landslides	
and	slope	 failures	are	a	 common	problem	because	
naturally	formed	slopes	are	disturbed	by	forestry	op-
erations.	History	has	shown	that	roads	with	improper	
terrain stability assessment in this area can cause sig-
nificant	slope	failures.	This	trend	is	expected	to	con-
tinue and may increase in the future; some estimates 
suggest	that	significant	portions	of	the	Caspian	Forest	
are	prone	to	mass	wasting,	and	forestry	operations	in	
this forest can accelerate landslide rates and magni-
tudes	(Jaafari	et	al.	2014).	Therefore,	understanding	of	
LS	is	needed	to	evaluate	forestry	strategies	including	
alternate choices of road location, choice of road stan-
dards,	choice	of	transport	mode,	and	understanding	
whether	timber	harvesting	on	and	around	steep	slopes	
is reasonable.
The	effectiveness	of	slope	stability	studies	is	appar-

ent	from	the	high	prediction	results	of	LS	assessment	
reports	from	models	such	as	logistic	regression	(e.g.,	
Pourghasemi	et	al.	2013),	knowledge-based	analytical	
hierarchy	 process	 (e.g.,	 Pourghasemi	 et	 al.	 2012,	
Pourghasemi	et	al.	2013),	fuzzy	logic	(e.g.,	Pourghasemi	
et	al.	2012,	Akgun	et	al.	2012),	artificial	neural	net-
works	(ANNs)	(e.g.,	Conforti	et	al.	2014),	support	vec-
tor	machine	(e.g.,	Pradhan	2013)	and	adaptive	neuro-
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fuzzy	interface	system	(ANFIS)	(e.g.,	Vahidnia	et	al.	
2010,	Sezer	et	al.	2011,	Bui	et	al.	2012,	Pradhan	2013).	
In	the	case	of	ANFIS,	developed	by	Jang	(1993),	only	
minor	applications	of	landslide-related	studies	have	
been	reported	(Bui	et	al.	2012).	ANFIS	is	a	multilayer	
feed-forward	network,	in	which	each	node	performs	
a	particular	function	on	incoming	signals	and	has	a	set	
of	parameters	pertaining	to	this	node	(Jang	1993).	AN-
FIS	 combines	 fuzzy	 logic	 and	ANNs	by	using	 the	
mathematical	properties	of	ANNs	in	tuning	a	rule-
based	fuzzy	inference	system	that	approximates	how	
the	human	brain	processes	information	(Akib	et	al.	
2014).	The	ANFIS	model	is	implemented	as	a	first	or-
der	Takagi	and	Sugeno’s	type	fuzzy	inference	system	
(Takagi	and	Sugeno	1983)	that	consists	of	2	fuzzy	if-
then rules:

Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1 (1)

Rule 2: If x is A2 and y is B2 then f2 = p2x + q2y + r2 (2)

Where:
x, y	 are	inputs
A, B	 corresponding	term	set
f	 output
p, q, r constant

The	main	objective	of	an	ANFIS	model	is	to	deter-
mine	the	optimum	values	of	the	equivalent	fuzzy	in-
ference	system	parameters	by	applying	a	learning	al-
gorithm	using	input–output	datasets.	The	parameter	
optimization	is	done	in	such	a	way	that	during	the	
training session, the error between the target and the 
actual	output	is	minimized.	Further	information	on	
ANFIS	can	be	found	in	Jang	(1993).
LS	assessment	involves	handling,	processing	and	

interpreting	a	large	amount	of	territorial	data.	Geo-
graphical	Information	Systems	(GIS)	are	very	useful	
in	susceptibility	assessment	(Ayalew	et	al.	2005),	be-
cause	they	allow	frequent	updating	of	the	database	
related	to	spatial	distribution	of	landslide	events	and	
their	predisposing	factors,	as	well	as	the	susceptibility	
assessment	procedures	(Conforti	et	al.	2014).	In	recent	
years,	the	use	of	GIS-based	approaches	to	study	land-
slides	has	been	 frequently	 reported.	These	 include	
GIS-based	 frequency	 ratio,	 index	 of	 entropy,	 and	
weights	of	evidence	models	(Jaafari	et	al.	2015a,	Jaafari	
et	al.	2014),	and	GIS-based	multicriteria	decision	anal-
ysis	(Feizizadeh	and	Blaschke	2013).	Bui	et	al.	(2012)	
used	a	GIS-based	ANFIS	model	for	LS	mapping	in	
Vietnam.	Their	results	showed	that	ANFIS	is	a	robust	
method	for	landslide	modeling.	Pradhan	(2013)	com-
pared	the	ability	of	the	decision	tree,	support	vector	
machine	and	ANFIS	models	to	do	LS	mapping	within	
a	GIS	environment.	The	results	showed	that	all	the	

models faired reasonably well, however, the success 
rate	showed	that	ANFIS	had	better	prediction	capabil-
ity.
This	paper	addresses	the	slope	failure	(landslide)	

susceptibility	assessment	in	the	Caspian	Forest	using	
an	ANFIS	suitable	to	GIS-based	analysis.	The	study	
tackles	the	main	causal	factors	and	delimits	the	most	
susceptible	zones	for	slope	failure	as	a	useful	tool	for	
the engineers involved in road construction and tim-
ber	harvesting.	The	susceptibility	maps	are	also	com-
pared	with	the	known	landslide	locations	according	
to	the	area	under	the	curve	(AUC)	of	receiver	operator	
characteristic	(ROC)	curve	to	test	the	reliability	and	
accuracy	of	the	modeling	approach.	The	susceptibility	
assessment	presented	here	enables	forest	practitioners	
to	avoid	areas	where	forestry	operations	could	cause	
slope	 failure,	 help	 identify	where	monitoring	pro-
grams	are	necessary,	and	adopt	appropriate	policies	
to	guide	more	efficient	forestry	operations.

2. Materials and methods

2.1 Study area
The	study	area	is	situated	in	Mazandaran	Province,	

which	shares	a	border	with	Golestan	and	Guilan	Prov-
inces	in	the	north	of	Iran.	The	study	area	has	an	ap-
proximate	 area	 of	 52	 km2 and is located between 
36º29’10˝	N	and	36º32´50˝	N	latitude	and	51º40´60˝	E	
and	51º48´20˝	E	longitude	(Fig.	1).
The	area	is	a	part	of	the	Educational	and	Experi-

mental	Forest	of	Tarbiat	Modares	University	in	the	
Caspian	Forest	with	slope	variations	between	flat	and	
>80°,	and	altitudes	between	160	and	2190	m.	Slope	
shapes	vary	but	frequently	represent	convex	elements.	
They mainly feature concave valleys. In this area, the 
stream	network	flows	from	the	north-east	to	the	west	
with	a	dendritic	pattern.	Due	to	proximity	of	the	Cas-
pian	Sea,	the	study	area	enjoys	a	humid	and	mild	cli-
mate	with	average	annual	precipitation	between	414	
to	879	mm.	The	average	summer	and	winter	tempera-
ture	was	 22.5	 and	 10ºC,	 respectively	 (Jaafari	 et	 al.	
2015b).	The	vegetation	cover	is	quite	continuous	and	
is formed by deciduous trees.
According	to	the	geologic	map	of	the	area,	pre-

pared	by	Geological	Survey	of	Iran	(GSI),	the	major	
portion	of	the	study	area	is	underlain	by	dolomitic	
limestone.	The	Alborz	fault	is	the	most	important	fault	
in the area and is a reverse fault that follows the west-
east	orientation	and	dip	toward	the	south.	This	fault	
is	active,	and	most	earthquakes	and	landslides	in	Ma-
zandaran	Province	are	the	result	of	displacements	and	
activity	of	this	fault	(Darvishzadeh	2004).
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2.2 Spatial database

2.2.1 Landslide inventory map
The	landslide	inventory	map	of	the	study	area	was	

compiled	by	inheriting	the	landslide	locations	from	
interpretation	of	aerial	photographs	and	field-based	
inspections.	Aerial	photographs	show	that	historical	
landslides	could	be	mapped	via	breaks	in	the	forest	
canopy,	denuded	vegetation	on	the	slope,	bare	soil,	
and	other	typical	geomorphic	characteristics	(Pradhan	
2013,	Jaafari	et	al.	2014).	Given	the	abundant	over	and	
understory	vegetation	in	the	study	area,	multiple	field	
surveys	and	observations	were	conducted	to	produce	
a	more	detailed	and	reliable	landslide	inventory	map	
(Jaafari	et	al.	2014).	Shallow	landslides	were	dominant,	
but	large	deep-seated	landslides	were	also	observed.	
In	 recent	 years,	 103	 landslides	were	 detected	 and	
mapped	within	52	km2 to assemble a database to eval-
uate	the	spatial	distribution	of	slope	failures	in	the	
study	area	(Fig.	1).

2.2.2 Slope failure (landslide) conditioning factors
The	recognition	and	mapping	of	an	appropriate	

set	of	instability	factors	related	to	slope	failures	re-
quires	previous	information	on	the	main	causes	of	
landslides	 (Guzzetti	et	al.	1999).	 In	 this	 study,	 the	

Fig. 1 Location of study area with landslide inventory map

Fig. 2 General structure of ANFIS
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landslide	conditioning	factors	(LCFs)	were	selected	
among the most commonly used in the literature to 
assess	slope	failures	susceptibility;	in	particular,	the	
results	of	field	surveys	suggested	that	slope	degree,	
slope	aspect,	altitude,	plan	curvature,	topographic	
wetness	index	(TWI),	stream	power	index	(SPI),	sed-
iment	transport	index	(STI),	 lithology,	rainfall,	dis-

tance to faults, distance to streams, normalized dif-
ference	 vegetation	 index	 (NDVI),	 forest	 canopy,	
forest	plant	community,	and	timber	volume	match	
very well with the landslide distribution in the study 
area.	The	calculation	and	significance	of	these	factors	
in	 landsliding	 has	 explicitly	 been	 presented	 in	
Pourghasemi	et	al.	(2013),	Jaafari	et	al.	(2014),	Jaafari	

Fig. 3 Geo-environmental parameter maps of the study area: slope degree, slope aspect, altitude, plan curvature, topographic wetness index, 
stream power index, sediment transport index, lithology, distances to faults, distances to streams, rainfall, normalized difference vegetation 
index, plant community, timber volume, and canopy



Spatial Prediction of Slope Failures in Support of Forestry Operations Safety (107–118) A. Jaafari et al.

Croat. j. for. eng. 38(2017)1 111

et	al.	(2015a),	and	Wang	et	al.	(2016).	Fig.	3	shows	the	
LCFs	used	in	this	study.
Slope	degree,	slope	aspect,	altitude,	plan	curvature,	

TWI,	SPI,	and	STI	layers	were	created	from	a	20	m	
Digital	 Elevation	Model	 (DEM)	 using	ArcGIS	 and	
SAGA	GIS.	The	geological	map	was	prepared	by	GSI	
on	a	1:100,000	scale.	Distance	to	faults	and	distance	to	
streams	were	computed	using	spatial	analyst	tool	of	
ArcGIS.	 The	 rainfall	map	was	 prepared	 using	 the	
mean	annual	precipitation	data	from	the	meteorolog-
ical stations for the study area over the last 20 years 
(Jaafari	et	al.	2014).	Extensive	investigations	by	the	
Tarbiat	Modares	University	on	the	study	area	have	
been	the	major	source	of	data	associated	with	NDVI,	
forest	plant	community,	forest	canopy,	and	timber	vol-
ume	used	in	the	present	study.	As	the	raster	dataset	
has	enriched	the	capability	for	spatial	analysis,	all	fac-
tor	layers	were	converted	into	raster	format.	Given	the	
extent	of	the	study	area	and	the	landslide	distribution,	

grid	cells	having	a	spatial	resolution	of	20×20	m	(Bui	
et	al.	2012,	Jaafari	et	al.	2014,	Jaafari	et	al.	2015a)	were	
selected	as	the	mapping	unit.	This	was	small	enough	
to	capture	the	spatial	characteristics	of	landslide	sus-
ceptibility	 and	 large	 enough	 to	 reduce	 computing	
complexity.
A	series	of	tests	was	also	performed	considering	

different	input	datasets	from	the	LCFs.	The	purpose	
of	selecting	various	datasets	was	to	explore	the	influ-
ence	of	parameter	enrichments	on	the	performance	of	
the	ANFIS	models,	and	the	importance	of	the	added	
parameter	 on	 the	 landslide	 assessments	 (Pradhan	
2013).	Table	1	shows	that	dataset_1	includes	a	maxi-
mum	number	of	LCFs,	and	 it	 continues	 to	narrow	
down	to	dataset_5.
The	idea	behind	this	kind	of	grouping	came	from	

the nature and the availability of data and resources 
of	each	LCF.	Some	factors,	such	as	forest	canopy,	tim-
ber	volume,	and	plant	community,	are	costly	to	collect	
across	forestlands	in	Iran	due	to	the	landscape	hetero-
geneity	and	unavailability	of	supporting	tools	such	as	
accurate	high-return	LiDAR	data	for	all	areas	and	fre-
quent	changes	over	a	short	time	period	due	to	forestry	
operations.	Thus,	they	were	only	included	in	datas-
et_1.	In	contrast,	the	preparatory	factors	(e.g.	slope,	
aspect,	altitude	and	lithology)	that	are	not	expected	to	
change	 significantly	 over	 a	 short	 time	period	 (e.g.	
50	years)	are	very	easy	to	quantify	using	fairly	simple	
GIS	operations.	These	factors	were,	therefore,	consid-
ered for inclusion in all datasets. The inclusion of other 
factors	in	different	datasets	also	follows	this	instruction.

2.3 Training and validation dataset
In landslide modeling, the landslide inventory 

map	needs	to	be	split	into	two	subsets	for	training	and	
validation.	Without	splitting,	it	would	not	be	possible	
to	validate	the	results	(Jaafari	et	al.	2014).	When	split-
ting data, there is no rule of thumb for the relative 
sizes	of	the	two	subsets	(Pradhan	2013).	Here,	the	in-
ventory	map	was	randomly	divided	into	two	datasets.	
Part_1	that	contains	80%	of	the	data	(82	landslides)	
was	used	 in	 the	 training	phase	of	 the	five	ANFIS	
models.	Part_2	is	a	validation	dataset	with	the	remain-
ing	20%	of	the	data	(21	landslides)	used	to	validate	the	
models	and	to	estimate	their	accuracy.	All	82	landslide	
locations	in	the	part_1	dataset	denote	the	presence	of	
landslides and were assigned to a value of 1. The same 
number	of	points	denoting	the	absence	of	landslide	
were	randomly	sampled	from	the	landslide	free	area	
and	assigned	a	value	of	0.	Values	for	the	15	LCFs	were	
then	extracted	to	build	a	training	dataset	(Bui	et	al.	
2012,	Pradhan	2013).	This	dataset	contains	a	total	of	
164	points,	with	one	target	variable	denoting	the	land-

Table 1 The factor list of the datasets from 1 to 5
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slide	presence/absence	and	the	15	LCFs.	This	dataset	
was	 further	randomly	partitioned	 into	 two	subsets	
including:	training	and	checking	to	develop	the	ANFIS	
models. The training set was used to adjust the con-
nections	weights,	membership	functions	and	model	
parameters.	The	checking	set	was	used	to	check	the	
performance	of	the	model	through	the	training	pro-
cess	and	to	stop	the	training	to	avoid	over	fitting.	This	
method of data division is recommended to control 
over	fitting	of	 the	models	 (Jang	et	al.	1997).	 In	 this	
study,	approximately	70%	(116	points)	of	the	extracted	
database was randomly selected as the training data-
set,	and	the	remaining	30%	(48	points)	as	the	checking	
dataset.	The	commercially	available	Neuframe	soft-
ware	(Neusciences	2000)	was	used	to	select	the	datas-
ets at random.
Due	to	the	different	scales	of	the	input	variables,	

and	in	order	to	increase	the	speed	and	accuracy	of	data	
processing,	input	data	need	to	be	normalized	from	0	
and	1	before	using	them	in	the	ANFIS	model.	For	this	
purpose,	the	extracted	values	from	LCFs	were	normal-
ized using the normalization formula as follows:

 i min
norm

max min

X X
X

X X
−

=
−

  (3)

Where:
Xi data that should be normalized
Xmax, Xmin	 	the	maximum	and	minimum	value	of	orig-

inal	data,	respectively
Xnorm normalized value of Xi.

2.4 Development the ANFIS models for the 
spatial prediction of slope failure
In	this	study,	a	type_3	ANFIS	model	(Takagi	and	

Sugeno	1983)	was	used	to	produce	susceptibility	maps	
of	the	study	area.	In	this	type	of	ANFIS	model,	the	
output	of	each	rule	is	a	linear	combination	of	input	
variables	added	by	a	constant	term	(Jang	1993).	The	
final	output	is	the	weighted	average	of	each	rule’s	out-
put	 (Buragohain	 and	Mahanta	 2008).	 The	 general	
structure	of	a	type_3	ANFIS	model	with	two	inputs	of	
x1 and x2,	and	one	output	of	y	is	shown	in	Fig.	2	(Eren-
turk	2009).	From	this	figure,	 it	can	be	seen	that	the	
model	contains	five	layers:	the	first	layer	actualizes	the	
fuzziness	of	inputs,	the	second	layer	calculates	the	fir-
ing strength of each rule, the third layer normalizes 
the	firing	strengths,	the	fourth	layer	determines	the	
consequent	parameters	of	the	rule,	and	the	fifth	layer	
computes	the	output	of	the	fuzzy	system	by	summing	
the	outputs	of	the	fourth	layer.
A	total	of	five	ANFIS	models	were	constructed	to	

produce	LS	maps	of	the	study	area.	To	implement	AN-
FIS,	MATLAB	programming	language	version	R2011a	

was	used.	GENFIS1	and	GENFIS2	functions	are	two	
available methods that have been widely used to gen-
erate	 the	 initial	 fuzzy	 inference	 system	 (FIS).	 The	
GENFIS1	generates	an	initial	Sugeno-type	FIS	for	AN-
FIS	training	using	a	grid	partition,	and	GENFIS2	uses	
subtractive	clustering	to	generate	the	initial	Sugeno-
type	FIS.	As	proposed	by	Chiu	(1997),	due	to	the	large	
number	of	input	variables	considered	in	this	study,	the	
GENFIS2	function	was	used	to	generate	the	initial	FIS	
for	ANFIS	training	by	first	applying	subtractive	clus-
tering	on	the	data.	GENFIS2	accomplished	this	by	ex-
tracting a set of rules that models the data behavior.
After	constructing	the	Sugeno-type	FIS	for	the	five	

ANFIS	models,	each	model	was	trained	by	consider-
ing	200	epochs.	Finally,	the	output	data	obtained	from	
the	models	were	converted	to	a	GIS	grid	data	to	create	
the	slope	failure	susceptibility	maps.

2.5 Validation and comparison of susceptibility 
maps
Prediction	modeling	does	not	have	a	scientific	sig-

nificance	without	computing	the	validity	of	the	results.	
Here,	the	susceptibility	assessment	results	were	tested	
using	known	 landslide	 locations.	Testing	was	per-
formed	by	comparing	the	known	landslide	location	
data	with	the	landslide	susceptibility	map.	To	validate	
the	results	of	the	susceptibility	assessment,	the	AUC	
of	the	ROC	curve	was	used	(Bui	et	al.	2012,	Pourghasemi	
et	al.	2012,	Pradhan	2013,	Pourghasemi	et	al.	2013,	Jaaf-
ari	et	al.	2014,	Jaafari	et	al.	2015a,	Ezzati	et	al.	2016).	
The	ROC	curve	is	a	graphical	representation	of	the	
trade-off	between	the	false-negative	and	false-positive	
rates	for	every	possible	cutoff	value.	By	tradition,	the	
plot	shows	the	false-positive	rate	(FPR) on the X	axis	
(Eq.	4)	and	the	true-positive	rate	(TPR) on the Y	axis	
(Eq.	5).

 1 TNX FPR
TN FP

 = = −  + 
 (4)

 TPX TPR
TP FN

 = =  + 
 (5)

Where:
TN	(true	negative)	and	TP	(true	positive)	are	the	

number	of	pixels	that	are	correctly	classified,	whereas	
FP	(false	positive)	and	FN (false	negative)	are	the	num-
bers	of	pixels	erroneously	classified.
The	area	under	the	ROC	curve	(AUC)	character-

izes the quality of a forecast system by describing the 
system’s	ability	to	anticipate	the	correct	occurrence	or	
non-occurrence	of	pre-defined	»events«	(Pourghasemi	
et	al.	2013).	The	best	method	has	a	curve	with	the	larg-
est	AUC;	the	AUC	varies	between	0	and	1,	where	1	
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indicates	perfect	prediction	and,	0.5	indicates	random	
predictions.	 Larger	ROC	value	 suggests	 better	 the	
compatibility	between	dependent	and	independent	
variables.	 The	 quantitative-qualitative	 relationship	

between	AUC	and	prediction	accuracy	can	be	classi-
fied	as	 follows:	0.9–1,	excellent;	0.8–0.9,	very	good;	
0.7–0.8,	 good;	 0.6–0.7,	moderate;	 and	 0.5–0.6,	 poor	
(Hosmer	et	al.	2013).

Fig. 4 Susceptibility map produced by: (a) model_1, (b) model_2, (c) mode_3, (d) model_4, (e) model_5
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3. Results
The	susceptibility	maps	produced	by	the	five	AN-

FIS	models	are	shown	in	Fig.	4a–e.	In	every	map,	the	
susceptibility	classes	of	I,	II,	III,	IV	and	V	indicate	the	
likelihood	of	slope	failure	(landslide)	initiation,	rang-
ing	from	very	low	to	very	high	susceptibility.	A	de-

tailed	interpretation	of	susceptibility	classification	is	
presented	in	Table	2.
This	shows	that	each	susceptibility	class	provides	

a	relative	ranking	of	the	likelihood	of	a	slope	failure	
following	road	construction	and/or	timber	harvesting.	
For	example,	the	first	class	implies	very	low	suscepti-
bility	to	slope	failure	and	the	area	characterized	by	this	
class	is	safe	for	forestry	operations.
The	results	of	validation	of	the	five	ANFIS	models	

using	ROC-AUC	are	shown	in	Figs.	5	and	6.	The	re-
sults	show	that	all	the	models	have	good	prediction	

Fig. 5 Prediction rate curves for the susceptibility maps produced 
in this study

Fig. 6 Success rate curves for the susceptibility maps produced in 
this study

Fig. 7 The landslide susceptibility classes delimited by the five 
ANFIS models

Table 2 Detailed slope failure susceptibility classification

Interpretation
Susceptibility 

class

Safe

Very low likelihood of failures following road construction or 
timber harvesting

I

Low instability

Normal road construction and timber harvesting will not 
significantly decrease terrain stability

II

Moderate likelihood of failures following road construction or 
timber harvesting

Minor failures expected in road cuts
III

High likelihood of failures following road construction or 
timber harvesting

IV

Very high likelihood of failures following road construction or 
timber harvesting

V
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capabilities,	with	 the	 best	 results	 of	 the	model_5	
(AUCsuccess rate=86.19%,	 AUCprediction	 rate=83.74%),	
 followed	 by	 the	 model_4	 (AUCsuccess rate=82.23%,	
AUCprediction	rate=75.81%).
In	addition,	a	comparison	between	the	five	suscep-

tibility	classes	delimited	by	the	different	ANFIS	mod-
els	is	presented	in	Fig.	7.	The	result	suggests	that	the	
moderate,	high	and	very	high	susceptibility	classes	
cover	more	than	60%	of	the	study	area.

4. Discussion

4.1 Landslide susceptibility mapping
Modeling	LS	across	a	forestland	is	challenging	be-

cause	of	geological,	topographical	and	environmental	
complexities.	Although	various	methods	for	LS	assess-
ment	have	been	proposed,	the	evaluation	of	predictive	
ability of these methods in forestlands still lags. This 
study	evaluated	the	predictive	ability	of	ANFIS	for	
modeling	LS	across	a	forestland	subjected	to	forestry	
operations.	Five	ANFIS	models	developed	herein	offer	
the	possibility	to	compare	the	distribution	landslide	of	
hazard	with	different	sets	of	LCFs.	When	the	ROC	
curves	of	these	five	models	were	considered	together,	
their	overall	performances	were	close	to	each	other.	
Performance	validation	indicated	that	the	most	suc-
cessful	ANFIS	model	 is	model_5,	which	has	much	
fewer	attributes	than	models	1–4.	Therefore,	it	can	be	
concluded	that	the	altitude,	slope	angle,	aspect,	and	
lithology	are	most	suitable	LCFs	for	LS	assessment	in	
the study area. Moreover, these results suggest that the 
other	LCFs	are	a	possible	source	of	bias	because	they	
decreased	the	prediction	accuracy.	There	is	always	a	
trade-off	between	the	quality	of	the	data,	the	resourc-
es	involved,	and	the	reliability	of	the	LS	assessment.	
To	achieve	the	best	quality	relation,	it	is	very	important	
to	invest	in	landslide	inventory	and	LCFs	databases	
(van	Westen	et	al.	2008).
Selection	of	LCFs	is	crucial	for	the	quality	of	LS	

models	(Irigaray	et	al.	2007).	Although	some	methods,	
such	as	linear	correlation,	Kolmogorov–Smirnov	test	
and	Genetic	Algorithm	(Irigaray	et	al.	2007,	Kavzoglu,	
et	al.	2015)	have	been	suggested	to	support	the	optimal	
selection	of	LCFs,	the	standard	guideline	is	still	de-
bated.	According	to	Remondo	et	al.	(2003a,	2003b),	the	
best	LS	models	can	be	produced	only	with	the	DEM-
derived factors. They concluded that some of the 
LCFs,	including	lithology	and	land	cover	(vegetation),	
improve	predictions	only	slightly.	Other	factors,	such	
as	regolith	thickness,	do	not	improve	the	predictions	
at	all	probably	because	the	variables	are	not	repre-
sented	accurately	enough.	However,	the	different	re-

sults	reported	by	Sezer	et	al.	(2011)	and	Pradhan	(2013)	
suggest	that	the	increase	in	the	number	of	LCFs	has	a	
positive	impact	on	the	overall	prediction	performance	
of	LS	assessment	using	ANFIS.	The	results	are	quite	
different	according	to	various	researchers	and	study	
areas. This is because there is no common guiding 
principle	for	selecting	LCFs	(Ayalew	et	al.	2005).	They	
are	usually	selected	based	on	the	landslide	types,	the	
failure	mechanisms,	 the	map	 scale	of	 analysis,	 the	
characteristics of the study area, and data availability 
(Glade	and	Crozier	2005).

4.2 Landslide susceptibility maps for the safety 
in forestry operations
As	pointed	out	by	van	Westen	et	al.	(2006),	the	sus-

ceptibility	classes	categorized	with	such	terms	as	»very	
high«,	»high«,	»moderate«,	»low«	and	»very	low«	risk	
should	be	defined	based	on	the	experience	of	the	ex-
perts	with	the	support	of	sufficient	models	and	depend	
on	the	likelihood	that	a	slide	will	occur	and	the	conse-
quences that such an event would have for the elements 
at	risk.	In	this	study,	each	susceptibility	map	was	as-
signed	a	set	of	symbol	(I	to	V)	to	indicate	the	likelihood	
of	slope	failure	(landslide)	initiation.	A	detailed	inter-
pretation	of	susceptibility	classification	for	the	relative	
ranking	of	the	likelihood	of	slope	failures	following	
road	construction	and/or	timber	harvesting	has	also	
been	provided.	 This	 interpretation	 of	 susceptibility	
classes	can	be	considered	as	a	safety	plan	by	which	
safety	is	managed	on	the	area,	as	this	plan	indicates	that	
each	part	of	the	area	poses	certain	risks	to	road	con-
struction and timber harvesting.
It	is	worth	pointing	out	that	the	assignment	and	

interpretation	of	the	susceptibility	classes	are	subjec-
tive	and	specifically	reflect	forest	management	consid-
erations	applied	by	managers	who	make	decisions	for	
management	 purposes.	 Therefore,	 contractors	 in-
volved	 in	 forestry	operations	must	have	 their	own	
operational	safety	plans.	These	plans,	which	must	be	
updated	by	contractors	on	a	regular	basis,	should	in-
clude	safety	and	health	policy,	responsibilities,	risk	
assessments	and	controls	(Ryan	et	al.	2004).	Moreover,	
the	nature	of	the	forestry	operations	implies	that	there	
can	often	be	several	different	operational	works	close	
to	each	other.	Therefore,	other	interpretations	can	also	
be	added	to	the	susceptibility	symbol	to	support	each	
part	of	the	forestry	operations. These may include soil 
erosion	potential,	risk	of	sediment	delivery	to	streams,	
and	the	potential	for	landslide	debris	to	enter	streams	
(BCMOF	and	BCMOE	1999,	Schwab	and	Geertsema	
2010).
Due	to	the	dynamic	nature	of	forestry	operations	

(e.g.	a	road	with	steep	cuts	is	constructed	in	a	slope	
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that	was	considered	to	be	of	low	susceptibility),	the	LS	
maps	are	subject	to	change.	The	single	most	important	
contributor	to	long-term	effectiveness	of	the	produced	
LS	maps	is	the	establishment	of	monitoring	systems	
to observe the changes and note when and how these 
changes	occur.	However,	given	that	a	monitoring	pro-
gram	within	a	mountain	forest	is	difficult	and	costly,	
the results of this study suggest that it be limited to the 
highly	susceptible	zones	identified	here.	Moreover,	
monitoring	programs	can	improve	the	confidence	in	
predictive	 ability	 of	 the	ANFIS	models	 developed	
here. These investigations were beyond the situation 
and	scope	of	this	study,	but	they	are	important	com-
ponents	that	benefit	more	efficient	planning	of	for-
estry	operations.

5. Conclusion
This	study	analyzed	the	potential	of	slope	failure	

in	a	mountain	forest	using	ANFIS	models	within	a	GIS	
environment.	The	outcome	of	GIS-based	ANFIS	ap-
plication	was	a	set	of	susceptibility	maps,	that	could	
be	used	to	predict	the	stability	of	slopes	from	15	basic	
factors	including	slope	degree,	slope	aspect,	altitude,	
plan	curvature,	TWI,	SPI,	STI,	lithology,	rainfall,	dis-
tance	to	faults,	distance	to	streams,	NDVI,	forest	can-
opy,	forest	plant	community,	and	timber	volume.	The	
results	of	this	study	suggest	that	all	of	the	five	ANFIS	
models	have	performed	reasonably	well	with	AUC	
values	over	70%.	Therefore,	they	can	be	used	to	de-
velop	prudent	hazard	mitigation	plans	for	safe	for-
estry	operations.	However,	the	best	model	can	only	be	
produced	with	altitude,	slope	angle,	aspect,	and	lithol-
ogy.	Forest	engineers	can	tailor	the	use	of	these	models	
based on their circumstances.
The	susceptibility	assessment	of	slope	failure	is	an	

essential	resource	of	knowledge	of	the	study	area	for	
its	capacity	to	support	safe	forestry	operations.	Unfor-
tunately, such studies are far from common in the 
mountainous	forestlands	subjected	to	forestry	opera-
tions.	This	makes	comparative	analyses	difficult.	Thus,	
it	is	important	to	apply	the	method	proposed	here	to	
different	environmental	settings.
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