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Abstract

In tactical forest management planning, the decisions required to meet the strategic plan are 
made, and these include: i) scheduling of spatially explicit harvest-blocks; ii) construction of 
a road-network required to access these blocks; and iii) transportation costs within the tactical 
forest planning area (hereafter only referred to as transportation costs) that emerge from the 
first two decisions. These three decisions are interdependent and should therefore be inte-
grated in any optimization model. At present, this integration is not fully made. This is be-
cause: i) the integrated model is NP-hard, and exact solutions are not feasible for large and 
medium-sized forests; and ii) metaheuristic search algorithms, which can be used on larger 
forests, have not integrated transportation costs realistically.
The economic consequences of not integrating transportation costs into tactical planning 
models has not been quantified and evaluated by researchers; and the objective of this paper is 
to fill this gap in knowledge. To this end, an exact solution approach is used to solve and 
compare two integrated models: i) a model in which transportation costs are included in the 
objective function, and b) a model in which transportation costs are excluded from the objective 
function. The models were applied to three forests ranging in area from 6628 to 19,677 ha.
Results show that: i) the model which included transportation costs yielded solutions with 
major reductions in both transportation and total costs; and ii) that, as the forests to which 
the model was applied tripled in area (from 6628 ha to 19,677 ha), the percent reduction in 
total costs increased disproportionately – more than fivefold (from 3.9% to 21%). These results 
are important, for they indicate that the integration of transportation costs into a tactical 
planning model is of major economic consequence.

Keywords: harvest-scheduling model, tactical planning, transportation costs, integer program-
ming, fixed charge network design model

and transporting harvested wood through the road-
network within the tactical forest planning area (here-
after only referred to as transportation costs) (Bjørndal 
et al. 2012). The economic importance of the integrated 
tactical planning problem has, therefore, warranted 
extensive research on optimization models of this 
planning problem (Bettinger and Chung 2004).

The first major advance in modeling the tactical 
planning problem in forestry was based on the insight 
that, since the optimal locations of both cut-blocks and 
roads are interdependent (given an objective to maxi-
mize revenue minus cost), a model that solves both of 

1. Introduction
In tactical forest management planning, among 

others, the following decisions are made to implement 
the forest strategic plan: i) scheduling of spatially ex-
plicit harvest-blocks (based on discounted revenue per 
block); ii) construction of a road-network required to 
access these scheduled blocks (based on discounted 
cost per km of constructed road); and iii) transporta-
tion of the scheduled harvest of wood through the 
constructed road network (based on cost per m3 per 
km). Hence, the two major costs resulting from tacti-
cal-level planning arise from constructing forest roads 
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these allocation problems simultaneously performs 
better than a model that first allocates the scheduled 
cut-blocks, and then designs an optimal road net-
work: i.e., a sequential approach (e.g., Weintraub and 
Navon 1976, Kirby et al. 1980, 1986, Jones et al. 1986). 
For example, Jones et al. (1986) showed that solutions 
resulting from a model in which decisions when har-
vesting, road construction and transportation were 
integrated, resulted in 15% to 45% lower costs than 
the solutions generated when these decisions were 
made sequentially.

A second major advance of tactical planning mod-
els occurred in the early 1990s, when models were 
adapted in response to the introduction of new envi-
ronmental objectives that required spatial constraints 
on harvesting (Bettinger and Chung 2004). For ex-
ample, tactical models were developed to include 
adjacency constraints (i.e., constraints ensuring that 
no set of adjacent cut-blocks be harvested in the same 
period in order that opening sizes not exceed a de-
fined limit in area). This problem has been addressed 
extensively by researchers (e.g., Goycoolea et al. 
2009). The introduction of spatial planning constraints 
required the introduction of binary decision variables 
to represent the scheduling of harvest-blocks, and 
thereby transformed the tactical harvest-scheduling 
model into a NP hard model (Murray 1999); i.e., the 
model required exponentially more computing time 
to be solved as the size of the problem instance in-
creased.

A third major advance in the tactical planning 
model occurred when metaheuristic algorithms were 
developed to solve the model. Given the computa-
tional challenge of solving the spatially explicit har-
vest-scheduling problem, there was an expansion of 
research in the 1990s, and beyond, into the design and 
application of metaheuristic search algorithms for 
solving this problem. This research was justified be-
cause exact solution methods, although capable of 
finding mathematically optimal solutions to the spa-
tially constrained tactical model, can only solve prob-
lem instances that are quite small relative to the size 
of problems encountered by practicing planners. 
Hence, the primary advantage of using metaheuristic 
solution methods is that, although their solutions 
were not demonstrably optimal, realistically-sized 
problem instances could be solved by them.

The solutions of models of the integrated harvest-
scheduling and road network design problem using 
metaheuristic algorithms differed slightly from mod-
els using exact solution methods. On the one hand, 
the models solved using exact methods had three key 
elements in their objective function: to maximize (i) 

the revenue from harvests, minus (ii) the cost of con-
structing roads and (iii) the cost of transporting har-
vested wood. The representation of transportation 
costs in these models was based on the flow of har-
vested wood through the constructed road network: 
i.e, the flow from supply nodes, through the road-
network, to demand nodes, using standard network-
flow constraints (e.g., Guignard et al. 1998, Andalaft 
et al. 2003, Silva et al. 2010, Veliz et al. 2015, Naderi-
alizadeh and Crowe 2018). On the other hand, models 
solved using metaheuristic algorithms either: (a) did 
not represent transportation costs in the objective 
function (e.g., Nelson and Brodie 1990, Murray and 
Church 1995, Clark et al. 2000, Richards and Gunn 
2000, 2003), or (b) if transportation costs were repre-
sented by network flow variables, road-construction 
decisions would not be integrated with transportation 
decisions (e.g., Bettinger et al. 1998, Chung et al. 2012).

The reason metaheuristic algorithms have not, 
thus far, been used to solve models where construc-
tion, harvesting and transportation decisions are 
fully integrated, is the computational burden: i.e., 
computing time required to solve such models. The 
computational challenge exists for metaheuristics be-
cause such an integration would require nesting a 
fixed charge network design model (see Magnanti 
and Wong 1984) within a spatially explicit harvest 
scheduling model; and both of these models are NP-
hard (Martel et al. 1998, Magnanti and Wong 1984). 
Hence, for each candidate harvest-schedule, evalu-
ated by a metaheuristic algorithm, a fixed charge net-
work design model (see Magnanti and Wong 1984) 
must be solved. Since several million candidate har-
vest-schedules are typically evaluated for a standard 
problem instance when using a metaheuristic algo-
rithm, the computational burden of solving an NP-
hard problem nested within another NP-hard slows 
the metaheuristic search to an ineffective exploration 
of search space over time.

There has been no quantitative research address-
ing the economic importance of including versus ex-
cluding transportation costs in the integrated tactical 
forest planning model. This inquiry is important be-
cause: (a) transportation costs entailed by a tactical 
plan are of major economic significance, and (b) me-
taheuristic algorithms do not realistically integrate 
transportation costs.

The economic consequences of not integrating 
transportation costs into tactical planning models has 
not been quantified and evaluated by researchers. 
Thus, the objective of this paper is to fill this gap in 
knowledge. An exact solution approach is used to 
solve and compare two integrated models: i) a model 
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in which transportation costs are included in the ob-
jective function, and b) a model in which transporta-
tion costs are excluded from the objective function. 
The models are applied to three forests areas 6628, 
12,622 and 19,677 ha in size, and their solutions were 
analyzed, mapped and compared based on income 
minus road construction and transporting costs.

2. Methods
The mathematical formulation of the integrated 

model, used in this paper, is the same formulation 
presented by Naderializadeh and Crowe (2018b). This 
formulation of the tactical planning model differs 
from prior published formulations in the following 
important respects.

First, the candidate roads in this model do not rep-
resent individual arcs, but rather, represent a set of 
operational-scale arcs that are constrained to meet the 
horizontal and vertical design-standards of forest 
roads (see Anderson and Nelson 2004). Hence, in this 
model, when a polygon is scheduled for harvest, and 
the construction of a road is thereby triggered, the full 
set of operational-scale arcs, comprising that road, is 
also triggered for construction. This approach was 
taken for two reasons: i) it can be useful if a tactical 
plan, handed down to the operational scale, contains 
roads that are designed to meet operational road de-
sign standards; and ii) the formulation facilitates us-
ing a dense set of candidate roads in the problem in-
stance; and a dense set of candidate roads facilitates 
more alternatives by which a road network can be 
designed to minimize construction and transporta-
tion costs (Naderializadeh and Crowe 2018b).

Second, the decision variable used to represent the 
construction of a candidate road is a directed arc, in-
stead of an undirected edge. Third, strengthening 
constraints are used that exploit the directed attribute 
of the candidate roads. Fourth, since the formulation 
can incorporate a dense set of roads, the operational-
scale arcs comprising two separate roads, connecting 
two separate polygons, can partly overlap on the 
same piece of land. Hence, in order to avoid double-
counting of construction costs, the objective function 
represents both roads that can overlap and roads that 
cannot overlap. The formulation of this integrated 
model is presented below.

Indices and Sets

k, K index and set of polygons
i, j, I indices and set of nodes
i’,j’,I’ indices and set of operational scale nodes

t, T index and set of time periods
D  set of destination nodes (entry points of the forest)
E set of directed shortest paths
Oi set of shortest paths directed out of node i
Ii set of shortest paths directed into node i
Ni set of polygons within which node i is located
Pt set of periods equal to or less than t
A  set of directed shortest paths in which no path 

shares an arc with another path
B  set of directed shortest paths in which paths 

share at least one arc with another path
R set of all sets of shared arcs
Sij  sets of shared arcs existing within the path be-

tween nodes i and j
u, U  index and set of maximum openings
Bt  set of polygons not eligible (by age) for harvest 

in period t.

Parameters

fu number of polygons in the maximum opening u
APCt allowable periodic cut in period t, m3

vkt volume harvestable from polygon (k) period t, m3

cijt  discounted cost of building a road, in set A, be-
tween nodes i and j in period t, $

dijt  discounted cost of building the unshared sec-
tion of the road in set B between nodes i and j in 
period t, $

d’i’j’t  discounted cost of building a road for a shared 
section of the shortest path from node i’ to node 
j’ in period t for a road in Set B, $

rkt  discounted revenue from harvesting polygon k 
in period t, $

tcijt  discounted transportation cost between nodes i 
and j in period t, $ per m3

M an arbitrarily large number.

Variables

xkt  1 if forest polygon k is harvested in period t, 0 
otherwise

yijt  1 if road from node i to j is constructed in period 
t, 0 otherwise

zijt  directed flow of harvested volume from node i 
to j in period t, m3

wijt  1 if the set of unshared arcs on a candidate road 
between nodes i and j is built in period t, 0 oth-
erwise

w’i’j’t  1 if a set of shared arcs between nodes i’ and j’ 
is built in period t, 0 otherwise

Ht total volume harvested in period t, m3
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The objective function [1] is to maximize the dis-
counted value of harvest-revenues minus the dis-
counted costs of road construction and transportation 
within the forest; transportation cost from the forest’s 
point of entry to the point of utilization is not included. 
The objective function is comprised of five summa-
tions. The first summation in the objective function 
represents the total revenue from harvesting. The sec-
ond summation represents the total discounted con-
struction cost for the roads that cannot overlap. The 
third and fourth summations in the objective function 
represent the total discounted construction costs for 
the roads that can overlap. The fifth element of the 
objective function represents total transportation costs. 
The first constraint [2] ensures that a polygon may not 
be harvested more than once during the planning ho-
rizon. Equation [3] prevents the harvesting of poly-
gons that are ineligible by age. The set of area-restrict-
ed adjacency constraints is defined in equation [4]. 
This is a standard formulation of area-restricted adja-
cency model (ARM), known as the path formulation, 
used by McDill et al. (2002) and Crowe et al. (2003). To 
use this equation, a set of maximum openings has been 
defined. Each maximum opening contains the mini-
mal set of adjacent polygons that, if harvested togeth-
er, would violate the maximum opening size limit.

Equation [5] defines an accounting variable, Ht; the 
volume harvested in each period. Equation [6] uses 
this accounting variable to impose an upper bound on 
the volume that may be harvested in each period. The 
value of this upper bound is a parameter handed 
down from a strategic model and is used to ensure the 
long-term sustainability of the forest’s multiple values. 
Equation [7] provides the link between the harvest 
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scheduling activity and the network-flow model; i.e., 
if a polygon is cut, then the harvest volume is triggered 
to flow out of the node located in close proximity to 
this harvested polygon landing. If the polygon is not 
cut, then the node within that polygon may not func-
tion as a supply-node, but may function as a trans-
shipment node. Equation [8] defines the demand-
node, located at the entry-point of the forest. Equation 
[9] ensures that a road may be built only once during 
the planning horizon.

Equatio[10] ensures that, if a flow of harvested 
wood passes from node i to j, then a road must be built 
along this arc, either in periods prior to the period of 
the flow, or in the period during which flow occurs–
but not later. Equations [11] and [12] ensure that, if a 
road containing shared operational-scale arcs between 
nodes i and j is built, then all of the operational-scale 
nodes comprising this road must also be built.

This formulation also contains the following 
strengthening constraints. Equation [13] strengthens 
the formulation by taking the form of a clique con-
straint. Klotz and Newman (2013) demonstrate the 
role of cliques in strengthening MIP formulations. In 
effect, [13] ensures that only one of the multiple pos-
sible roads exiting node i, may be built. This constraint 
makes sense because the volume harvested in a forest 
is typically transported by a truck; and when a truck 
enters a vertex within the road network, it will exit 
from one arc and cannot travel along two separate di-
rected arcs. Equation [14] ensures that the potential of 
the flow of wood, along the same arc is constrained. 
Equation [15] is similar in structure to a »trigger« con-
straint first formulated by Kirby et al. (1986). Equation 
[15] ensures that, if a road is built at vertex j and enters 
vertex i, then a road exiting vertex i must be built in 
the same or prior periods. When [15] is combined with 
the clique constraint [13], then only one of the candi-
date roads exiting vertex i may be selected. Equation 
[16] ensures that, if a road is built exiting vertex i, then 
either: i) the polygon at vertex i must have been har-
vested; or ii) a road entering vertex i must have been 
built; or iii) both i) and ii). The distinction between [15] 
and [16] may be summarized as follows. For equation 
[15] the reasoning is: if a built road enters a vertex, then 
a road exiting that vertex must also be built. For [16] 
the reasoning is, if a road exits a vertex, then some-
thing must be responsible for its exiting that vertex: 
either a road entered it, or a polygon was cut, or both. 
Equation [17] is from Kirby et al. (1986). Due to its ef-
fectiveness, it has also been used by Guignard et al. 
(1998), Andalaft et al. (2003) and Veliz et al. (2015). 
Constraint [17] has also been referred to as a »trigger« 
constraint because it ensures that if a polygon is cut, 

then the construction of a road emanating from the 
vertex within that polygon is triggered to be built. The 
original integrated model already has the construction 
of a road triggered by a flow of wood passing through 
it (equation [10]) The construction of a road triggered 
by the harvesting of a polygon, from which a road 
emanates, has been shown to be computationally ef-
fective by Guignard et al. (1998) and Anadalaft et al. 
(2003). Equation [18] ensures that at least one of the 
roads leading to the forest’s point of entry is built.

Finally, equations [19] and [20] constrain the har-
vest and road building decision variables to be binary, 
and equations [21], [22], [23] and [24] define the mod-
el’s continuous positive variables.

3. Case Study
The effects of including versus excluding transpor-

tation costs in the objective function of the integrated 
model were tested on three problem instances, derived 
from three forested areas within the Kenogami Forest 
Management Unit, located in the boreal forest of On-
tario, Canada. All polygons, in each data-set, contain 
one of six yield curves, and the mean area of each poly-
gon was 30 ha. Three problem instances, of different 
areas, were used: 6628, 12,622 and 19,677 ha and com-
prised of 244, 400 and 500 forested polygons, respec-
tively. The maximum harvest opening restriction was 
65 ha per period.

For each problem instance, the planning horizon 
was comprised of three five-year periods. The existing 
age-class distribution found in the case study was 
used. The minimum rotation age for each stand was 
set at 70 years. Revenue values of the standing timber 
were estimated using Armstrong’s (2014) conversion 
return approach. Harvesting cost (i.e. the cost of fell-
ing, processing and extracting wood to the roadside), 
stumpage charges, reforestation and other manage-
ment fees were deducted from the mill gate value of 
logs to calculate the revenue values before deducting 
road construction and transportation costs. These rev-
enue values varied as a function of log diameter: $54 
per m3 (ages 70 to 90 years), $62 per m3 (ages 91 to 120 
years), and $70 per m3 (ages greater than 120). Trans-
portation costs were estimated using the formulation 
in Martin (1971): assuming a truck load of 44 m3 and 
an average cost of $96 per hour for truck operation 
(private communication 2017), the marginal transpor-
tation cost inside the forest was estimated to be $0.30 
per m3 per km. Both costs and revenues were discount-
ed at 4% per annum, from the middle of each period. 
Adjacent polygons were defined as polygons sharing 
a common node.
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The three forests were without a set of candidate 
roads. Therefore, a network of candidate roads was 
generated for each forest by using the optimal road 
location model of Anderson and Nelson (2004). This 
road location model allows one to generate an opera-
tionally feasible road, subject to vertical and horizontal 
design standards, that connects two points on a for-
ested landscape at minimal cost. The optimal road loca-
tion model was used with a 50×50 m grid layer (defin-
ing the scale of the operational-scale arcs) and a digital 
elevation model. All road design parameters, used in 
this work, were identical to those used by Anderson 
and Nelson (2004). The density of the entire set of can-
didate roads emerged from using the following rule: 
generate one candidate road connecting all pairs of 
adjacent forested polygons. In addition, all polygons 
adjacent to the forest’s point of entry also had one road 

connecting them to this entry-point. The mean con-
struction cost for all roads generated, for the three for-
ests, was $35,377 per km with a standard deviation of 
$7940 per km. All currency units are Canadian dollars.

The number of decision variables required to solve 
the integrated harvest scheduling problem for these 
three forests over the three five-year periods is pre-
sented in Table 1.

The integrated model was executed for a maxi-
mum of 3 hours on each problem instance, using the 
default search parameters in CPLEX® 12.5, on an Intel® 
Xeon X5650 hex-core processor, using 96 gigabytes of 
RAM, and a CentOS 5.5 operating system.

4. Results
The results are presented under four sub-headings: 

i) explanatory notes on the results; ii) general trend of 
the results; iii) the effect of problem size upon the re-
sults; and iv) the spatial attributes of the mapped solu-
tions.

4.1 Explanatory Notes on Results
In Table 2, model A refers to the model with the 

objective function: maximize revenue – road construction 
costs – transportation costs; and model B refers to the 
model with the objective function: maximize revenue – 
road construction costs. Table 2 presents a comparison 
of the resulting objective function values, and their 
components, for each model. That is, Table 2 presents 

Table 1 Dimensions of modeled problem instances, for three five-
year periods

Forest Size
Candidate Roads
#binary variables

Forested Polygons
#binary variables

Flow
Variables

244 polygons
6628 ha

3618 732 3618

400 polygons
12,622 ha

5796 1200 5796

500 polygons
19,677 ha

6912 1500 6912

Table 2 Resulting solution attributes from applying the integrated model to three forests, using two different model A versus B

Forest and objective function used
Objective 
function, $

Revenue, 
$

Construction 
cost, $

Transportation 
cost, $

Total cost, 
$

Relative gap*, 
%

244 Polygons – 6628 ha

Transportation in objective function, A 7,120,920 8,294,403 1,023,702 149,782 1,173,484 4.06%

Transportation not in objective function, B 7,118,786 8,339,891 1,021,979 199,126 1,221,105 4.00%

Relative difference, A vs. B** 0.03% –0.55% 0.17% –24.78% –3.90% –

400 Polygons – 12,622 ha

Transportation in objective function, A 14,436,180 16,594,559 1,314,144 844,236 2,158,380 2.21%

Transportation not in objective function, B 14,115,224 16,627,346 1,317,314 1,194,808 2,512,121 1.86%

Relative difference, A vs. B** 2.27% –0.20% –0.24% –29.34% –14.08% –

500 Polygons – 19,677 ha

Transportation in objective function, A 22,045,766 26,567,561 2,935,917 1,585,879 4,521,796 3.45%

Transportation not in objective function, B 21,155,272 26,875,130 3,046,667 2,673,191 5,719,858 2.97%

Relative difference, A vs. B** 4.21% –1.14% –3.64% –40.67% –20.95% –

* Relative gap, % = [(value of the current upper bound/value of the best known feasible solution) – 1] × 10 
** % Relative difference, B vs. A = [(B/A) – 1] × 100
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the resulting transportation costs that are entailed by 
the solutions of model B given the selected harvest 
blocks and the road network selected using model B. 
These entailed transportation costs were calculated 
from the flows of wood found in each of model B solu-
tions, represented by the solution values for the flow 
variables, zijt and multiplying these values by the same 
marginal transportation cost ($0.30 per m3 per km) 
used in model A. Transport cost, in Table 2, is a mea-
sure ($ per m3) of the cost of moving harvested wood 
from the cut-blocks to the forest’s point of entry.

Second, the qualities of the solutions (i.e., proxim-
ity to the mathematical optimum) are presented in 
Table 2 under the column »Relative Gap«. Here we 
observe that: i) in none of the instances was the relative 
gap closed (after 3 hours of computing time); ii) the 
gaps ranged from 1.86% to 4.06%; and iii) the two dif-
ferent objective function values, for each forest, yield-
ed solutions with very similar relative gaps, differing 
at most by 0.5%. Hence, based on the qualities of the 
solutions, it is reasonable to infer that the solutions are 
of sufficient quality to be quantitatively meaningful. 
Note: we do not here imply that any statistical infer-
ence is possible based on these results; for the sample 
size is too small. The results in this paper are, there-
fore, to be interpreted as illustrative.

4.2 General Trend of the Results
The general trend of the results in Table 2 are: i) no 

meaningful difference between harvest revenues and 
constructions costs can be observed between models A 
versus B; ii) major reductions in transportation costs 
can be observed in solutions, ranging from a reduction 
of 24.8% (for the smallest forest) to a reduction of 40.7% 
(for the largest forest); and iii) the reduction in total 
costs increased dramatically from 3.9% (for the smallest 
forest) to 21% (for the largest forest). From these trends, 
we observe that: i) the integration of transportation 
costs into the objective function yielded solutions with 
major reductions in both transportation and total cost 
of the tactical plan; and ii) as the total area of the forest 
tripled (from 6628 ha to 19,677 h) the percent reduction 
of in total costs that resulted from using model A versus 
B increased more than fivefold (from a 3.9% to 21%).

4.3 The Effect of Problem Size Upon the Results
The results in Table 2 indicate that the relative im-

portance of transportation costs in the solutions in-
creased as the size of the problem increased. In Table 3, 
this relative importance is represented as the ratio of 
transportation cost to revenue, and the ratio of trans-
portation costs to construction costs, for each solution. 
These ratios are based on the data presented in Table 2.

The ratios in Table 3 show that, in the smallest for-
est, for every $1 spent on transportation, $55 in reve-
nue was returned using model A, and $42 was re-
turned using model B. In the largest forest, for every 
$1 spent on transportation, $17 in revenue was re-
turned using model A and $10 was returned using 
model B. In other words, the influence of transporta-
tion costs upon the overall profitability of the solution 
did not remain constant as the size of the problem 
instance increased, but rather increased by a mean fac-
tor of 3.7 as the size of the forest approximately dou-
bled in area. Similarly, Table 3 shows that, for the 
smallest forest, for every $1 spent on transportation, 
$7 were spent on road construction in model A and $5 
were spent on road construction in model B. For the 
largest forest, for every $1 spent on transportation, $2 
were spent on road construction in model A and $1 
was spent on road construction in model B. In other 
words, (a) the relative importance of transportation 
costs increased as the problem size increased while the 
relative importance of construction costs decreased as 
the problem size increased; and (b) the influence of 
transportation costs upon the total costs of the solution 
increased by a mean factor of 4.25 as the area of the 
forest approximately doubled in area.

4.4 Mapped Solutions
Fig. 1a shows the mapped solution, for the 500 poly-

gon forest, where transportation cost is included in the 
model’s objective function; and Fig. 1b shows the 
mapped solution where transportation cost is excluded. 
Table 2 shows that these two solutions generate almost 
similar values in revenues and in construction costs, but 

Table 3 Ratios of revenue : transportation costs and of construction 
: transportation costs found in the solutions

Forest and Model
Revenue : 

Transportation
Construction : 
Transportation

244 Polygons – 6628 ha

Model A 55:1 7:1

Model B 42:1 5:1

400 polygons – 12,622 ha

Model A 20:1 2:1

Model B 14:1 1:1

500 Polygons – 19,677 ha

Model A 17:1 2:1

Model B 10:1 1:1
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differ by 41% in transportation costs. These two maps 
show a set of spatial attributes worth noting.

Fig. 1 reveals that the solution produced using 
model B contains a set of harvest-blocks that are slight-
ly more dispersed from the forest’s point of entry than 
does the solution generated using model A. This dif-
ference in spatial dispersion of harvest-blocks is not 
major, but it can be observed.

Fig. 1 also illustrates a trend for those polygons 
scheduled for harvest that are more remotely located 
from the point of entry. In Fig. 1b, the paths from these 
polygons to the point of entry are, in general, less than 
direct (i.e., more tortuous) than the paths from remote 
polygons in Fig. 1a.

Based on the two spatial attributes observed (dis-
persion of cut-blocks and directness of paths), it ap-
pears from Fig. 1 that the tortuous paths required to 
transport harvested wood from remote polygons to 
the point of entry are a greater cause of the increased 
transportation costs than the minor increase in disper-
sal of cut-blocks.

5. Discussion
The results of this work illustrate two interesting 

trends with regard to planning for transportation costs 

at the tactical level: i) that a model which simultane-
ously plans for harvest-revenue, and transportation 
and road-construction costs can consistently generate 
solutions with major reductions in transportation 
costs, when compared to a model which simultane-
ously plans only for harvest-revenue and road-con-
struction costs; and ii) that the importance of planning 
for transportation costs increases greatly, relative to 
planning for construction, as the area of the forest in-
creases. We will now discuss the implications of these 
results with regard to both forest management plan-
ning and research on tactical modeling.

As mentioned in the introduction, the appeal of 
metaheuristic algorithms to forest planners is that they 
can be used to solve large tactical planning models in 
a reasonable period of computing time. The disadvan-
tage is that they have not, thus far, been adapted to 
solve models that plan simultaneously for: i) the loca-
tion and timing of harvesting activities, ii) the con-
struction of a road-network, and iii) the transportation 
of harvested wood through this road network. The 
results of this work suggest that this disadvantage can 
have a major economic impact upon the profitability 
of a forest management plan, and that this impact 
grows rapidly in magnitude as the size of the forest 
increases.

Fig. 1 Contour maps of two different solutions for the forest comprised of 500 polygons
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The economic significance of planning for trans-
portation at the tactical scale should, therefore, influ-
ence research efforts directed at designing heuristic or 
metaheuristic algorithms that can be used to solve 
tactical planning models that integrate decisions on 
harvesting, road construction, and transportation ac-
tivities. This research illustrates the merits of integrat-
ing all three of these decisions in one model.

6. Conclusion
In this work, an optimization model was built to 

provide mathematically optimal solutions for the tac-
tical forest planning problem, where the objective 
function was to maximize revenue minus transporta-
tion and construction costs. The costs of transportation 
were either included in or excluded from the objective 
function as the model was applied to three forests of 
increasing size. The results indicate that the inclusion 
of transportation costs in the objective function has the 
effect of reducing both transportation costs and total 
costs; and that this reduction in costs increases as the 
size of the problems increases. The magnitude of the 
reduced costs also indicates that the problem of solv-
ing an integrated model, which includes transporta-
tion costs in the objective function, is of considerable 
economic importance, especially for large-scale for-
ests. Hence, the results of this paper illustrate how the 
research problem of solving this problem is of a high 
economic priority in forest management planning.

Future research stemming from this work would 
include the development of a metaheuristic solution 
method that can be used to solve the integrated mod-
el on large-scale forests.
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