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Abstract

High temporal resolution of synthetic aperture radar (SAR) imagery (e.g., Sentinel-1 (S1) 
imagery) creates new possibilities for monitoring green vegetation in urban areas and gener-
ating land-cover classification (LCC) maps. This research evaluates how different pre-process-
ing steps of SAR imagery affect classification accuracy. Machine learning (ML) methods were 
applied in three different study areas: random forest (RF), support vector machine (SVM), 
and extreme gradient boosting (XGB). Since the presence of the speckle noise in radar imagery 
is inevitable, different adaptive filters were examined. Using the backscattering values of the 
S1 imagery, the SVM classifier achieved a mean overall accuracy (OA) of 63.14%, and a 
Kappa coefficient (Kappa) of 0.50. Using the SVM classifier with a Lee filter with a window 
size of 5×5 (Lee5) for speckle reduction, mean values of 73.86% and 0.64 for OA and Kappa 
were achieved, respectively. An additional increase in the LCC was obtained with texture 
features calculated from a grey-level co-occurrence matrix (GLCM). The highest classification 
accuracy obtained for the extracted GLCM texture features using the SVM classifier, and Lee5 
filter was 78.32% and 0.69 for the mean OA and Kappa values, respectively. This study im-
proved LCC with an evaluation of various radiometric and texture features and confirmed the 
ability to apply an SVM classifier. For the supervised classification, the SVM method outper-
formed the RF and XGB methods, although the highest computational time was needed for the 
SVM, whereas XGB performed the fastest. These results suggest pre-processing steps of the 
SAR imagery for green infrastructure mapping in urban areas. Future research should address 
the use of multitemporal SAR data along with the pre-processing steps and ML algorithms 
described in this research.
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1. Introduction
Forests are the most widely distributed terrestrial 

vegetation type, and thus play an important role in 
ecology and shaping the dynamics of regional and 
global ecosystem processes (Wulder 1998). The moni-
toring of green urban areas using remote sensing (RS) 
techniques can be used as a tool for integrated spatial 
planning (Gašparović and Dobrinić 2020). Moreover, 
using satellite imagery, urban areas with different 
characteristics and densities can be determined (Zhang 
et al. 2014). Benefits of green infrastructure (GI) in 
 urban environments, such as mitigation of heat is-
land effects and flood alleviation, are burdened by 
severe anthropogenic impacts that can diminish 

 potential GI functionality. To counter that, the European 
Commission adopted the European Green Infrastruc-
ture Strategy, which aims to address the increasing 
fragmented nature of Europe urban areas as a result 
of human activities.

Optical satellite imagery is historically mostly 
used for monitoring the urban forest areas. As a result 
of easier interpretation and pre-processing methods, 
optical data is usually preferred to synthetic aperture 
radar (SAR) data. The optical RS system relies on the 
illumination of the Earth by the sun and measures 
the reflected radiation from a surface. Optical image 
quality can be seriously affected by atmospheric 
 conditions (Jensen 2005). Active systems (like SAR) 
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provide illumination by sending out microwaves and 
are mostly cloud independent. A radar system sends 
pulses of microwaves towards the Earth and records 
the intensity of the returned echoes for each pixel. 
Sentinel-1A (S1A), the first of the dual Sentinel-1 satel-
lites, was launched in 2014 and has begun providing 
multi-temporal series of SAR imagery (C-band) at a 
time interval of 12 days. With Sentinel-1B (S1B), 
launched in 2016, the data provision has a repeat cycle 
of six days, while operating in a pre-programmed 
conflict-free mode (Veloso et al. 2017). Due to its all-
weather, all-day imaging capability, several authors 
(Martinis et al. 2018, Twele et al. 2016) evaluated the 
possibility of the Sentinel-1 (S1) imagery for flood 
mapping or for irrigation mapping (Ferrant et al. 2017, 
Gao et al. 2018).

However, the single-use of SAR imagery for land-
cover mapping has not been well-researched, partly 
as a result of the complexity, diversity, and availabil-
ity of SAR data, and partly due to difficulties in data 
interpretation associated with speckle. Speckle noise, 
a common phenomenon in SAR systems, is associated 
to random interference between the coherent returns, 
and many filtering methods have been proposed, 
such as multi-looking, spatial filtering method, and 
transform domain filtering (Yuan et al. 2018). Idol et 
al. (2017) used the Lee-Sigma filter for radar speckle 
reduction on Radarsat-2 C-band imagery with a pixel 
resolution of 8 m. A maximum-likelihood decision 
rule was applied to create a classification map for four 
land cover classes. Overall accuracy (OA) for the 
despeckled radar imagery for both 3x3 and 5x5 win-
dow sizes was 60.3% and 62.2%, respectively. Magh-
soudi et al. (2012) improved the classification results 
by applying speckle reduction on Radarsat-1 data and 
7x7 enhanced Frost filter. Using a Bayes’ classifier to 
determine nine land-cover classes, OA was 60% for a 
single radar image.

Including texture information from the grey-level 
co-occurrence matrix (GLCM) can produce new im-
ages by making use of additional spatial information 
and different land-cover classes, which reflects in im-
proving the classification accuracy. Balzter et al. (2015) 
investigated S1A imagery at 100 m spatial resolution 
for European CORINE land-cover mapping. Several 
random forest (RF) classifications of 27 land-cover 
classes were performed with different input bands. 
By using only horizontal-horizontal and horizontal-
vertical backscatter values for the classification, OA, 
and Kappa values were 47.5% and 0.38, respectively. 
The highest classification accuracy of 68.4% and 
 Kappa of 0.63 was achieved with auxiliary texture 
and geomorphometric input bands. Zakeri et al. 

(2017) used S1 and ALOS-2 PALSAR-2 imagery for 
land-cover classification (LCC) in Tehran. Using the 
backscattering values only on S1 imagery for the SVM 
classification of five land-cover classes, the OA was 
45.70%, and Kappa was 0.30. In addition, texture fea-
tures were selected from the PCA, and stacked with 
the backscattering polarised images. For SVM clas-
sification, the OA was increased to 54.25%, and  Kappa 
to 0.41. Idol et al. (2017) added a variance texture 
 measure created with the original Radarsat-2 image. 
Depending on the window size used for computing 
texture measure, OA ranged between 62.8% and 
71.8%. Li et al. (2012) made a comparative analysis of 
ALOS PALSAR L-band and RADARSAT-2 C-band 
imagery. Different classification algorithms were 
 examined for LCC on 10 classes in a tropical moist 
region. Classification accuracy on C-band data with 
maximum likelihood classifier achieved OA of 54.72% 
and Kappa of 0.42.

Most research focus only on speckle filtering of 
SAR imagery, or on extracting texture variables. This 
paper will evaluate how classification results change 
for S1 imagery during the classification of GI in urban 
areas on:

⇒ original vertical-vertical (VV), vertical-horizon-
tal (VH) bands

⇒ speckled bands with different spatial filters
⇒ GLCM texture features added to speckled image 

bands.
Furthermore, different machine learning methods 

were evaluated for the ability to produce LCC maps.

2. Materials and Methods
The objective of this study was to evaluate the use 

of single S1 imagery for land-cover mapping on three 
different study areas with an extent of 50×50 km. To 
reduce the speckle effect and to increase LCC accura-
cy, different adaptive filters were tested (Lee, refined 
Lee, Gamma-Map, and Lee-Sigma). Furthermore, VV 
and VH image texture were added along with speck-
led image bands, and the classification accuracy was 
compared. For this research, the machine learning 
(ML) methods used for land-cover mapping on the S1 
imagery were random forest (RF), support vector ma-
chine (SVM), and extreme gradient boosting (XGB). 
Because of the high classification accuracy and their 
nonparametric nature, RF and SVM are mostly used 
for LCC (Noi and Kappas 2018, Rodriguez-Galiano et 
al. 2012), while the XGB classifier slightly outper-
formed RF and SVM in similar research (Man et al. 
2018, Hirayama et al. 2019).
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This paper is organised as follows (Fig. 1): (1) study 
area selection and data collection (see Section 2.1 and 
2.2 for more details); (2) pre-processing of the SAR 
data, involving speckle noise filtering (SPK) and cre-
ation of the GLCM for deriving texture features (see 
Section 2.3 for more details); (3) land-cover classifica-
tion using the RF, SVM, and XGB ML methods (see 
Section 2.4 for more details); and (4) evaluation to as-
sess the classification accuracies obtained by the RF, 
SVM, and XGB (see Section 2.5 for more details).

2.1 Study Areas
The land-cover mapping was applied to study ar-

eas across Europe with different geographical and 
environmental conditions (Fig. 2a), including the 
 following towns: Zagreb in Croatia, Hannover in 
 Germany, and Porto in Portugal. Zagreb (Fig. 2b) is 
surrounded by Medvednica mountain on the north 

and the Sava River on the south, and the rest repre-
sents a continental landscape with a uniform relief 
(Fig. 2e). Hannover (Fig. 2c)is the capital and largest 
city of the Federal State of Lower Saxony, Germany. 
The city is situated on the River Leine, and sometimes 
called the »garden city« for numerous parks, public 
gardens, and forests (Fig. 2f). Porto (Fig. 2d) is located 
in the northeast of the Iberian Peninsula and above the 
Douro River estuary. The city has a high population 
density and covers an area of approximately 45 km2 
(Fig. 2g). The extent of the land-cover mapping in this 
research had the same dimensions (50×50 km).

2.2 Data
A polar-orbiting two-satellite S1 constellation was 

launched in 2014 (S1A) and 2016 (S1B). Both satellites 
carry a C-Band with the capability of providing dual 
polarisation observations in several measuring modes. 

Fig. 1 Workflow of land-cover mapping used in this research
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Fig. 2 (a) Study area locations; (b), (c), and (d) are entire study areas illustrated using a green band of Sentinel-2 (S2) imagery (band 3) with 
example subset locations (black square); (e), (f), and (g) are example subsets with an extent of 8×8 km for Zagreb, Hannover, and Porto
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The default mode over land is the interferometric 
wide-swath (IW) mode (Torres et al. 2012). S1 Ground 
Range Detected (GRD) products were acquired in the 
IW mode and used in this research. Level-1 GRD has 
been multi-looked and projected to the ground range. 
The characteristics of the used imagery and the acqui-
sition dates are listed in Table 1.

Table 1 Characteristics of Sentinel-1 (S1) data used in this research

Zagreb Hannover Porto

Acquisition date 07-June-2018 09-July-2018 19-June-2018
Satellite S1A S1B S1A
Acquisition orbit DESC ASC DESC
Relative orbit 124 66 125
Product Unique ID A9FA 2500 B4D7
Pixel spacing 10x10 m
Polarisation VV, VH VV, VH VV, VH

2.3 Pre-processing of SAR Data
Pre-processing steps of the S1 imagery were exe-

cuted with the Graph Processing Tool (GPT) of ESA’s 
S1 Toolbox (S1TBX), which is embedded in the  Sentinel 
Application Platform (SNAP, version 6.0). The GPT 
allows for consecutive execution of all individual pre-
processing modules within a fully-automated process-
ing chain (Twele et al. 2016). After applying an orbit 
file for precise orbit information, the SAR images must 
be radiometrically-corrected, terrain-corrected, and 
filtered due to the speckle noise. After pre-processing, 
each study area was cropped to the extent of 50×50 km. 
Visual analysis of classification maps were conducted 
for example subsets of 8×8 km.

Within the radiometric calibration, the pixel values 
of the images have to be transformed from radar re-
flectivity (stored as digital numbers) to a measure of 
the ground reflectivity or radar cross-section. The ra-
diometric calibration is performed by calculating the 
sigma nought (σ0) or normalised radar cross-section 
coefficient. The source of the speckle noise is attrib-
uted to the random interference between the coherent 
returns. Image interpretation is difficult since the qual-
ity of the radar imagery is influenced by speckle. The 
speckle effect can be reduced using either multi-look-
ing, filtering methods or transform domain filtering 
(Woodhouse 2006). In this research, several adaptive 
filters were evaluated using the SAR data. Filters are 
designed to adjust to local image variations to smooth 
the values and thereby reduce speckle, and lines and 
edges are enhanced to maintain the sharpness of the 

imagery. Based on previous studies (Hong et al. 2014, 
Kupidura 2016, Mansourpour et al. 2006), the filters 
used were Lee filters with window size 3×3 (Lee3), 5×5 
(Lee5), refined Lee (RefLee), a Gamma-Map with win-
dow size 3×3 (Gamma3), and Lee sigma with window 
size 5×5 (LeeSigma5). Lee filter belongs to the local-
statistics filter family, and smooths speckle in homo-
geneous areas, while details and high-frequency infor-
mation are preserved in heterogeneous areas (Shi and 
Fung 1994). Many adaptive filters for speckle reduc-
tion have been developed on the basis of the Lee filter 
model (Ciuc et al. 2001).

Due to the terrain effects (foreshortening, layover, 
or shadowing effects), geometric distortions are not 
considered in the GRD imagery provided by ESA. 
Therefore, the GRD scenes have to be terrain-corrected 
from slant range to ground range geometry (Twele et 
al. 2016). One arcsecond Shuttle Radar Topography 
Mission (SRTM) digital elevation model (DEM) is used 
in this research. SRTM tiles are automatically down-
loaded by the S1TBX, and the S1 imagery is terrain-
corrected. The images were projected in WGS 1984/
UTM Zone 33 N (Zagreb), Zone 32 N (Hannover), and 
Zone 29 N (Porto). In the end, the σ0 coefficients were 
converted to dB using a logarithmic transformation 
(Zheng 2017):

 σ0
db=10log10σ0 (1)

The ground surface texture within the image pro-
vides additional information regarding the land cover 
type that can be used for classification (Chand and 
Badarinath 2007, Masjedi et al. 2016). GLCM can be 
interpreted as joint grey level probability density dis-
tributions or 2-D image histograms. It characterises the 
texture parameters by calculating how often different 
combinations of pixel brightness with specific values 
and specified spatial relationships occur (Kuplich et 
al. 2005). Haralick et al. (1973) defined fourteen fea-
tures that are calculated from this matrix. Principal 
component analysis (PCA) was used prior to classifica-
tion for deriving the maximum possible information 
into the minimum additional texture information, 
which were then stacked with speckled input bands. 
In this research, the GLCM texture features – Mean (2), 
Contrast (3), and Variance (4) were calculated as fol-
lows (Zakeri et al. 2017):
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 GLCM Variance i P i j 
ji

= −∑∑ ( ) ( , )m 2  (4)

Where:
pij (i,j) is the matrix cell index
R total sum of P
Px(i) which is equal to  is the i-th entry in the matrix 
retreived by the row sums of p(i,j).

Prior to supervised classification, ten textural pa-
rameters were calculated from the original S1 imagery. 
In the research from Idol et al. (2017), higher classifica-
tion results were obtained when texture measures 
were extracted from original S1 images than from 
despeckled imagery. After that, the first three compo-

nents from the PCA result that contained the greatest 
variance of input variables were chosen (Fig. 3a, Fig. 
3b, and Fig. 3c). The preliminary classification results 
in the Hannover area (Fig. 3d) are shown in Fig. 3e. 
With further investigation using various combinations 
of PCA components, it was decided to use the Mean, 
and the Variance as the input texture features for the 
GLCM classification (Fig. 3f).

2.4 Machine Learning Methods for Land-Cover 
Classification

2.4.1 Random Forest
RF is an ensemble of a large number of tree-type 

classifiers, which are trained in parallel with boot-
strapping followed by aggregation, jointly referred to 

Fig. 3 Results of PCA for 8×8 km example subset in Hannover study area: (a) GLCM mean; (b) texture contrast; (c) GLCM variance; (d) study 
area illustrated using a near-infrared band of S2 imagery (band 8); (e) SVM classification with a Lee5 filter and three GLCM texture bands; (f) 
SVM classification with Lee5 filter and two GLCM texture bands
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as bagging. Bootstrapping reduces the overall variance 
of the RF classifier by using different subsets of avail-
able features in the model (Breiman 2001). Hence, 
some of the training samples will be chosen more than 
once, while some others will not be chosen at all in a 
new set. Essentially, random forest enables a large 
number of weak or weakly-correlated classifiers to 
form a strong classifier. For LCC, the RF algorithm is 
robust to the presence of mislabelled data, has high 
accuracy performance for large-scale study, and has 
easy-to-tune parameters (Pelletier et al. 2019).

2.4.2 Support Vector Machine
Like the RF, SVMs are also used for the production 

of land-cover maps through satellite image classifica-
tion, due to their insensitivity to noise and overfitting 
of the data (Breiman 2001). The SVM was initially de-
signed for binary (two-class) problems. To separate 
the two classes, the objective is to find an optimal hy-
perplane that represents the largest separation. The 
instances that rely on the margins are called support 
vectors, and by using them, the margin of the classi-
fier is maximised (Cortes and Vapnik 1995). In this 
research, the classes might not be linearly separable. 
Kernel representations offer a solution in locating 
complex decision boundaries between classes. Differ-
ent types of kernels can be used in the SVM classifica-
tion: linear, polynomial, radial basis function (RBF), 
and sigmoid (Taati et al. 2015). According to Knorn et 
al. (2009), in LCC studies, the RBF kernel should pro-
vide the best overall results for GI mapping. When 
training an SVM with the RBF kernel, two parameters 
must be considered: the cost parameter (C) and the 
width of the kernel function named gamma (γ) (Qian 
et al. 2015). The C parameter decides the size of mis-
classification allowed for non-separable training data, 
and the γ parameter affects the smoothing of the shape 
of the class-dividing hyperplane (Noi and Kappas 
2018). A large value of C may create an overfitted 
model, whereas adjusting the γ will influence the 
shape of the separating hyperplane.

2.4.3 Extreme Gradient Boosting
Extreme gradient boosting (XGBoost; XGB) is a 

regularised extension of traditional boosting ensemble 
techniques that belong to the classification and regres-
sion trees (CART) family of machine learning. As an 
ensemble tree-boosting method, the algorithm con-
verts weak learners into strong learners (Georganos et 
al. 2018). Incorrectly classified samples receive higher 
weights at the next step, forcing the classifier to focus 
on their performance in the following iterations. The 
final classification is the most vigorous, as it includes 
the combined improvement of all the previously mod-

eled trees (Chen and Guestrin 2016). Previously, gradi-
ent boosting models lacked a robust regularisation 
factor, making them susceptible to overfitting. In con-
trast, XGB overcomes this shortcoming by providing 
a stronger regularisation framework (Georganos et al. 
2018).

2.5 Accuracy Assessment
For this study, the land-cover classes were selected 

following similar research and are shown in Table 2 
(Gašparović and Jogun 2018, Gašparović et al. 2019). 
Polygons representing the aforementioned classes 
were chosen from Google Earth imagery, and from S2 
satellite imagery acquired on similar dates as the S1 
imagery for each study area. Following the examples 
of good practices for sampling design (Olofsson et al. 
2014), stratified random sampling was applied to a 
single-date land-cover map. To classify the randomly-
generated samples collected over the entire study area, 
the reference samples were divided into training (70%) 
and validation (30%) subsets (Table 2). In order to en-
sure the independence between the training and vali-
dation subsets, a separate probability sample for ac-
curacy assessment was implemented (Stehman and 
Foody 2019).

Table 2 Overview of training and validation samples for each land-
cover class

Zagreb Hannover Porto

Land-cover class Train. Valid. Train. Valid. Train. Valid.

Water 100 50 100 50 100 50

Bare soil 200 100 200 100 200 100

Forest 200 100 200 100 210 113

Built-up 200 100 200 100 200 100

Low vegetation 170 80 200 100 170 80

Total 870 430 900 450 880 443

The classification accuracy was assessed using the 
Kappa coefficient (Kappa), and the overall accuracy 
(OA) (Congalton 1991). Furthermore, additional ac-
curacy metrics, i.e., the user’s accuracy (UA) and the 
producer’s accuracy (PA), were derived from the con-
fusion matrix. In such a way, the UA and PA are com-
puted to represent individual class accuracies, instead 
of merely the OA accuracy. Training of the ML models 
and the accuracy assessment were conducted using 
the R programming language, version 3.4.1 (R Core 
Team, 2017).
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3. Results
Overall, 11 classifications were computed for each 

study area. Classifications were computed for a radio-
metric classification on backscatter values (VV, VH); a 
radiometric classification on speckled VV, VH polari-
sations with different adaptive filters (SPK); and an 
integrated radiometric and texture feature classifica-
tion with SPK polarisations (GLCM). Accuracy assess-
ment for the pixel-based classifications was computed 
in terms of OA, Kappa, PA metrics, and UA metrics.

The highest classification results (Table 3) for VV, 
VH classification in Zagreb, Hannover and Porto was 
achieved by the SVM method, the OA was 65.70%, 
61.79% and 61.92%, respectively. In the SPK classifica-
tion in Zagreb, Hannover and Porto, the highest ac-
curacy was achieved with the Lee5 filter with OA of 
77.04%, 72.17% and 72.36% and using the SVM classi-
fier, respectively. Classifications using GLCM features 
performed better than VV, VH and SPK in all test ar-
eas. For the GLCM classification, the highest accuracy 
in Zagreb, Hannover and Porto was obtained using a 
Lee5 filter with the SVM method, with OA values of 
79.68%, 76.08% and 75.77%, respectively.

In all study areas, the SVM obtained higher accura-
cies than RF and XGB, with mean OA values for all 
classifications of 71.61%, 68.06%, and 69.15%, respec-
tively (Table 3). Generally, the SPK classification 
achieved higher OA and Kappa values than radiomet-
ric classification on VV, VH polarisations. An addi-
tional increase in OA was obtained with the classifica-
tion using GLCM texture bands. When comparing 
only GLCM results, the computed OA and Kappa 
values are similar, but the highest accuracies are 
achieved with the Lee5 filter.

The UA and PA accuracy metrics were used for the 
discrimination of the used land-cover classes. In 
 Zagreb (Fig. 4), the UA and PA for the water class 
achieved the highest values using all three ML meth-
ods. Lower UA and PA values were achieved for the 
forest and built-up classes. The forest class yielded a 
higher UA than the built-up class, except for the SPK 
Lee5 classification with the SVM, and the built-up 
class achieved higher PA values. The lowest values of 
the UA and PA were achieved for bare soil and low 
vegetation. Regardless of the classification computed 
on VV, VH, SPK, or GLCM features, for the water class 
the UA value was in the range between 93.61% and 
98.36%, and the PA value was in the range between 
77.07% and 81.75%. Bare soil attained higher PA values 
than UA values, which means that the RF, SVM, and 
XGB methods correctly identified more ground truth 
pixels as bare soil, but the commission error for this 

class was much higher. This class was mostly misclas-
sified as built-up. An increase of the UA from 79.03% 
on VV, VH to 86.76% with SPK, and additionally to 
91.00% with GLCM was reported for the forest class. 
The built-up class was also well-classified, especially 
with the Lee5 filter for SPK and GLCM classifications 
with an SVM, where the UA values were 87.42% and 
81.76%, respectively. The aforementioned filter also 
produced the highest PA values for the built-up class. 

Table 3 Overall accuracy (OA) and Kappa values of RF, SVM, and 
XGB, as applied to all three study areas

Zagreb Hannover Porto Mean values
Method OA, % Kappa OA, % Kappa OA, % Kappa OA, % Kappa

Or
ig

ina
l

VV
, V

H

RF 59.91 0.41 55.64 0.43 57.21 0.46 57.58 0.43

SVM 65.70 0.48 61.79 0.49 61.92 0.52 63.14 0.50

XGB 62.99 0.45 58.49 0.46 59.23 0.49 60.24 0.47
SP

K

Le
e3

RF 68.99 0.53 59.48 0.47 63.11 0.54 63.86 0.51

SVM 72.30 0.57 67.23 0.56 68.10 0.60 69.21 0.58

XGB 70.11 0.55 62.96 0.51 64.84 0.56 65.97 0.54

Le
e5

RF 74.39 0.61 66.00 0.56 68.39 0.60 69.60 0.59

SVM 77.04 0.64 72.17 0.63 72.36 0.65 73.86 0.64

XGB 74.92 0.62 67.13 0.57 69.34 0.61 70.46 0.60

Re
fL

ee

RF 60.02 0.42 55.60 0.43 57.30 0.46 57.64 0.44

SVM 65.74 0.48 61.78 0.49 61.92 0.52 63.15 0.50

XGB 62.80 0.45 58.49 0.46 59.29 0.49 60.19 0.47

Ga
m

m
a3

RF 69.09 0.53 59.51 0.47 63.07 0.53 63.89 0.51

SVM 72.30 0.57 67.23 0.56 68.10 0.60 69.21 0.58

XGB 70.11 0.55 62.96 0.51 64.98 0.56 66.02 0.54

Le
eS

ig
m

a5 RF 59.97 0.41 55.63 0.43 57.30 0.46 57.63 0.43

SVM 65.70 0.48 61.79 0.49 61.91 0.52 63.13 0.50

XGB 62.99 0.45 58.49 0.46 59.31 0.49 60.26 0.47

GL
CM

Le
e3

RF 75.72 0.64 72.43 0.64 73.92 0.67 75.70 0.65

SVM 78.97 0.68 75.04 0.67 74.81 0.68 77.35 0.68

XGB 76.32 0.65 72.73 0.64 73.81 0.67 75.49 0.65

Le
e5

RF 76.45 0.65 73.47 0.65 74.81 0.68 76.24 0.66

SVM 79.68 0.69 76.08 0.68 75.77 0.69 78.32 0.69

XGB 76.75 0.65 73.98 0.66 74.11 0.67 76.22 0.66

Re
fL

ee

RF 75.53 0.64 71.65 0.63 73.33 0.66 75.44 0.64

SVM 78.24 0.67 74.22 0.66 74.43 0.68 76.52 0.67

XGB 76.09 0.64 71.67 0.63 73.11 0.66 75.15 0.64

Ga
m

m
a3

RF 75.75 0.64 72.48 0.64 74.11 0.67 75.72 0.65

SVM 78.97 0.68 75.04 0.67 74.81 0.68 77.35 0.68

XGB 76.32 0.65 72.73 0.64 73.80 0.67 75.44 0.65

Le
eS

ig
m

a5 RF 75.54 0.64 71.88 0.63 73.44 0.67 75.30 0.65

SVM 78.24 0.67 74.23 0.66 74.45 0.68 76.51 0.67

XGB 76.21 0.64 71.67 0.63 73.03 0.66 75.22 0.64
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Fig. 4 UA and PA for the Zagreb study area (95% confidence level)
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The lowest OA and PA values were obtained for 
the low vegetation class, as a result of a confusion be-
tween the forest and bare soil classes. The UA was in 
the range between 28.42% and 32.99% for classification 
on VV and VH; for SPK it was in the range between 
28.35% and 48.49% and for the GLCM it was between 
51.81% and 54.09%. Generally, the SVM classifier per-
formed better than RF and XGB methods for all land-
cover classes, except the forest class. For the forest 
class, the SVM had higher UA values for classifications 
on VV and VH, and on the SPK. Using the GLCM 
features, all three methods produced similar UA val-
ues for the forest class.

In Hannover (Fig. 5), all ML methods reached the 
highest UA for the water class in the range from 
82.34% to 95.68%, and with lower PA values in the 
range between 62.54% and 90.07%. In Hannover, for 
the VV and VH and SPK classifications, the highest PA 
values were achieved in the bare soil class, in the range 
between 75.52% and 88.34%. Classification with tex-
ture bands (i.e., in the GLCM) increased the UA ac-
curacy, especially for the bare soil class, with the high-
est difference of UA values between VV, VH, and 
GLCM classifications of 24.75%. The lowest UA values 
were achieved in the built-up and low vegetation 
classes. The UA values for the built-up class were in 
the range between 25.01% and 58.80%, and those for 
low vegetation were in the range between 30.59% and 
50.49%. The built-up class yielded higher PA values 
than the low vegetation class. Built-up pixels were 
mostly misclassified as forest or low vegetation, 
whereas mostly low vegetation pixels were committed 
to the forest class. In Hannover, the SVM produced the 
highest UA values for the water, built-up, and low 
vegetation classes. For the VV, VH, and SPK classifica-
tions, the SVM classifier showed better performance 
for discrimination of the bare soil and forest class than 
the other two methods. However, for the bare soil 
class, the RF outperformed the SVM and XGB for the 
classification using the GLCM features, and for the 
forest class, both the RF and XGB methods achieved 
higher accuracy than the SVM.

In Porto (Fig. 6), the UA and PA values for the wa-
ter class achieved the highest values for all three ML 
methods. The UA ranged between 79.80% and 91.30%, 
whereas the PA ranged between 73.07% and 90.97%. 
Slightly lower UA and PA values were achieved for 
the bare soil, and built-up classes, followed by the for-
est class, and the lowest UA and PA values were 
achieved for the low vegetation areas. The UA values 
for the bare soil class increased by approximately 11% 
between VV, VH, and SPK classifications using the 
RFmethod and Lee3 filter, and an additional 13% with 

additional texture bands (i.e., in the GLCM) stacked 
with Lee3 speckled polarisation. For the built-up class, 
the highest UA and PA values were achieved in Porto, 
as compared to Zagreb and Hannover, where the UA 
values were higher than PA values. This means that 
the omission error is much higher for this class. The 
UA values increased with the GLCM features for some 
land-cover classes (e.g., forest and low vegetation), 
meaning that the texture bands helped the ML meth-
ods to correctly separate these classes. The forest class 
achieved lower UA values than in Zagreb and Han-
nover because of confusion with the built-up and low 
vegetation classes. In this study area, the SVM achieved 
better UA results than the RF and XGB methods for all 
classes in the classifications on VV, VH, and SPK. All 
ML methods produced similar results in the classifica-
tions with the GLCM. Generally, the classification on 
a speckle filtered image with a Lee5 adaptive filter 
produced the best UA values for all classes, except for 
the water class, where Lee3 and Gamma3 produce bet-
ter results. Additionally, stacked texture GLCM fea-
tures improved the classification results for bare soil, 
forest, and low vegetation classes.

4. Discussion
This paper evaluates how different pre-processing 

steps of SAR imagery reflect on GI mapping in urban 
areas when applied to pixel-based classification. Com-
pared to optical satellite data, SAR data has not been 
equally explored in GI urban applications due to its 
complexity. Three different ML methods (RF, SVM, 
and XGB) were applied to different study areas situ-
ated in Croatia, Germany, and Portugal (Fig. 1).

For the analysis of how classification accuracy 
changes during different pre-processing steps, classi-
fication was evaluated based on radiometric VV, VH 
backscatter values. The highest OA and Kappa (Table 3) 
were achieved with the SVM method, followed by XGB, 
while RF yielded the lowest accuracy. Therefore, our 
study confirmed the performance of these classifiers 
for LCC based on similar research (Noi and Kappas 
2018, Dobrinić et al. 2020). The classification using 
single S1 imagery on VV, VH backscatter values with 
the SVM achieved a mean OA value of 63.14% and a 
Kappa of 0.50. The aforementioned results are similar 
to or slightly better than those obtained by Balzter et 
al. (2015) and Idol et al. (2017), who also used C-band 
SAR imagery for land-cover mapping. Since the salt-
and-pepper effect is seen of LCC maps (Appendix A, 
Fig. A1–A3), an additional increase in classification 
results was done with speckle filtering. For speckle 
reduction, different adaptive filters were applied. 
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Fig. 5 UA and PA for Hannover study area (95% confidence level)
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Fig. 6 UA and PA values for Porto study area (95% confidence level)s
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Lee et al. (1994) have given a comprehensive review 
of the better-known SAR speckle filters, and based on 
that research, different adaptive filters were examined. 
Best classification results were obtained with Lee5 fil-
ter for all three ML methods – RF, SVM, and XGB, with 
OA of 69.60%, 73.86%, and 70.46%, respectively. Nev-
ertheless, visually on LCC maps (Appendix A, Fig. 
A1–A3) salt-and-pepper effect is reduced and some 
land-cover classes (e.g., built-up, bare soil) are grouped 
together into thematic meaning. UA and PA metrics 
(Fig. 4, Fig. 5, and Fig. 6) prove that spatial filters im-
proved the classification of the land-cover classes, es-
pecially forest, low vegetation, and bare soil class. In 
the SPK classification, a variability concerning the ac-
curacy results among the study areas occurs, but the 
classification results have increased compared to the 
results obtained for the classification on original VV, 
VH bands. This positive trend in improving the clas-
sification results has been already reported by 
 Maghsoudi et al. (2012), with an OA of 60% with 7x7 
enhanced Frost filter. In research by Idol et al. (2017), 
a Lee-Sigma filter with 5x5 window was used for 
speckle filtering, and the obtained OA was 62.2%. 
Lv et al. (2015) evaluated land-cover classes in urban 
areas using RADARSAR-2 imagery. Using the SVM 
method, OA and Kappa of 76.79% and 0.74, were 
achieved, respectively. In this research, the highest OA 
and Kappa values were obtained with Lee filter. The 
aforementioned filter proved to be superior for visual 
and computational interpretation. It reduced misclas-
sification between low vegetation and forest cover 
classes, and effectively preserved edges and features.

Since the SAR systems can distinguish textures, 
their use, as a measure of image roughness, proved to 
increase the classification accuracy for land-cover 
mapping (Balzter et al. 2015, Dekker 2001, Idol et al. 
2017). In this research, the layer stacking of GLCM tex-
ture features (Mean and Variance) significantly in-
creased the overall accuracy. The aforementioned tex-
ture bands were calculated from original VV, VH 
bands, and not on speckled bands, as reported in the 
paper by Idol et al. (2017). Speckle filtering reduces the 
capability of using texture features in LCC. The texture 
contrast was not included in the classification, as it 
showed significant noise in terms of enhancing the 
edges of objects to the water class (Fig. 2). A similar 
pattern occurs in the research by Zakeri et al. (2017), 
where the edges of different structures were recog-
nised as a Built-up 3 class. Nevertheless, from the filter 
used and with the textural parameters, in this research, 
the mean OA yielded values for the SVM of 77.21%, 
followed by RF at 75.68%, while XGB yielded the low-
est OA at 75.50%. A similar trend of increasing OA 

with adding texture bands to the classification was 
obtained by Balzter et al. (2015), who classified land-
cover from S1 and SRTM DEM data using an RF clas-
sifier. The best result was achieved by adding GLCM 
measures and SRTM DEM data as input features, as 
the OA increased to 68.4%, and the Kappa was equal 
to 0.63. Idol et al. (2017) stacked variance texture 
 measure to original VV, VH bands of RADARSAT-2 
C-band imagery. The obtained classification accuracy 
for four land-cover classes was 72%. For the GLCM 
classification, visual improvement (Appendix A, Fig. 
A1–A3) can be seen, especially compared to VV, VH 
classification maps. The salt-and-pepper effect is 
 reduced significantly, and a bigger agricultural fields 
(i.e., low vegetation class) or block of buildings can be 
recognised in GLCM classification maps.

Detailed insight of the land-cover classes are shown 
in Fig. 4, Fig. 5, and Fig. 6 for Zagreb, Hannover, and 
Porto through additional accuracy metrics (i.e., UA and 
PA), respectively. The water class achieved the highest 
UA for all three study areas. Due to its all-weather, all-
day imaging capability, S1 imagery is mostly used for 
flood mapping (Amitrano et al. 2018, Martinis 2017). 
The forest class was also well-classified as reported in 
the research by Dostálová et al. (2018), where GLCM 
texture bands helped for better differentiation of this 
class. In the research by Zakeri et al. (2017), the UA 
value of 44.90% and the PA value of 65.20% for vegeta-
tion was obtained, whereas forest and low vegetation 
classes were discriminated more efficiently in this re-
search. Slightly lower results were achieved for the 
bare soil class, wherein GLCM texture information 
increased the UA. The extraction of built-up areas was 
already investigated for S1 imagery by Pesaresi et al. 
(2016) and Zakeri et al. (2017). In this research, the built-
up class was correctly identified in Zagreb and Porto, 
and the lowest UA accuracy was achieved in  Hannover. 
Pesaresi et al. (2008) presented a procedure for the 
 calculation of the texture-derived index for discrimina-
tion of the built-up structures. Their PanTex index 
 reduces the edge effects and improves the capacity to 
distinguish between built-up and nonbuilt-up areas. In 
this research, the lowest OA and PA values were 
 obtained in the low vegetation class, as a result of the 
confusion with the forest and bare soil classes. For bet-
ter discrimination of the aforementioned land-cover 
class, multitemporal data (Gašparović and Dobrinić 
2020) or integration with optical satellite data (Dobrinić 
et al. 2020) should be used. Furthermore, using cross-
orbit (i.e., ascending and descending orbit), S1 imagery 
can improve land-cover type classification (Sayedain 
et al. 2020). In the aforementioned research, the 
 accuracy results are at least 4% better than single-orbit 
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classification. Therefore, the joint use of cross-orbit S1 
imagery must be considered in the time-series analysis 
of the SAR imagery.

In this research, land-cover mapping was investi-
gated for application in urban forest areas using single-
date S1 imagery. The OA and Kappa values increased 
with speckle filtering, whereby Lee5 spatial filter per-
formed the best among all filters used in this research. 
The highest classification accuracy was obtained with 
adding VV, VH image texture bands into the classifica-
tion. Using PCA for selecting GLCM texture features 
prior to classification, produced higher classification 
results compared to similar research C-band data (Idol 
et al. 2017, Li et al. 2012, Zakeri et al. 2017). This re-
search confirmed that using SPK (Lee5) and GLCM 
texture features (Mean and Variance) in urban areas are 
essential to modern urban planning and management, 
especially in combination with SVM classifier. Speckle 
filtering and additional input features (e.g., texture 
measures) improved LCC accuracy compared to previ-
ous research (Balzter et al. 2015, Clerici et al. 2017, 
Suresh et al. 2016). The main disadvantage of the afore-
mentioned methods is the need for storage and pro-
cessing capabilities to handle a large number of input 
features for classification. Therefore, feature selection 
methods (e.g., filter or wrapper methods) should be 
used for LCC (Tang et al. 2014). The aforementioned 
technique enables the ML algorithm to train faster, re-
duces overfitting, and improves the accuracy of a mod-
el (Inglada et al. 2016, Jin et al. 2018).

Future research is proposed using multitemporal 
radar data in order to better discriminate and classify 
GI in urban areas. Since results of this research cannot 
be directly compared to the classification made with 
optical data (e.g., S2), additional research should ad-
dress the integration of radar and optical sensor data 
for LCC mapping, especially for areas mostly covered 
with clouds.

5. Conclusions
In this research, single-date S1 imagery was used 

as the data input for green infrastructure mapping of 
urban areas using three different ML methods (RF, 
SVM, and XGB). Due to the speckle noise inherent 
with radar, different adaptive filters were examined. 
In the final step, GLCM texture features as inputs were 
added along with speckled image bands, and the clas-
sification accuracy was compared.

The classification results, in terms of OA, increased 
by 14.51% from the classification on VV, VH polarisa-
tion to SPK classification with the Lee5 filter. The Lee5 
filter obtained the highest classification results for 

speckle filtering. In addition, the textural parameters 
were calculated by applying a GLCM. Classification 
with GLCM texture bands, in terms of OA, increased 
19.38% from the classification on VV and VH. The su-
pervised classification results with texture features 
were found to be superior to the results without tex-
tures in two main aspects: higher accuracy and less 
noise. The highest improvement, in terms of UA and 
PA metrics, was achieved by low vegetation class, 
which can be additionally improved by the integration 
of the optical sensor data.

For the supervised classification of the urban for-
estry, the SVM method outperformed the RF and XGB 
methods. This study confirmed the efficiency of the 
SVM classifier for GI mapping in urban areas, which 
outperformed RF and XGB methods.

In order to produce accurate LCC maps in urban 
areas, pre-processing steps of SAR imagery described 
in this research, along with Lee5 spatial filter, GLCM 
texture bands (Mean and Variance) and SVM classifier 
should be used.
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Appendix A
Hereinafter, visual assessments of LCC maps on VV, VH, SPK, and GLCM texture bands for Zagreb, Hannover, 

and Porto are shown in Fig. A.1, Fig. A.2, and Fig. A.3, respectively. The classification maps were computed with 
the RF, SVM, and XGB methods, and the extent of example subset is 8×8 km.

Fig. A1 Classification maps of land-cover on example subset using RF, SVM, and XGB on VV and VH polarisations; SPK with Lee5 filter; and 
GLCM texture features stacked with Lee5-filtered VV, VH polarisations for Zagreb study area
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Fig. A2 Classification maps of land-cover on example subset using RF, SVM, and XGB on VV and VH polarisations; SPK with Lee5 filter; and 
GLCM texture features stacked with Lee5-filtered VV, VH polarisations for Hannover study area
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Fig. A3 Classification maps of land-cover on an example subset using RF, SVM, and XGB on VV and VH polarisations; SPK with Lee5 filter; 
and GLCM texture features stacked with Lee5-filtered VV, VH polarisation for Porto study area


