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Abstract

When investigating the forwarding process within the timber supply chain, insufficient data 
often inhibits long-term studies or make real-time optimisation of the logistics process difficult. 
Information sources to compensate for this lack of data either depend on other processing steps 
or they need additional, costly hardware, such as conventional crane scales. An innovative 
weight-detection concept using information provided by a commonly available hydraulic pres-
sure sensor may make the introduction of a low-cost weight information system possible. In 
this system, load weight is estimated by an artificial neural network (ANN) based on machine 
data such as the hydraulic pressure of the inner boom cylinder and the grapple position.
In our study, this type of crane scale was set up and tested under real working conditions, imple-
mented as a cloud application. The weight scale ANN algorithm was therefore modified for ro-
bustness and executed on data collected with a commonly available telematics module. To eval-
uate the system, also with regard to larger sample sizes, both direct weight-reference measurements 
and additional volume-reference measurements were made. For the second, locally valid weight-
volume conversion factors for mainly Norway spruce (Picea abies, 906 kg m-3, standard error of 
means (SEM) of 13.6 kg m-3), including mean density change over the observation time (–0.16% 
per day), were determined and used as supportive weight-to-volume conversion factor.
Although the accuracy of the weight scale was lower than in previous laboratory tests, the 
system showed acceptable error behaviour for different observation purposes. The twice-ob-
served SEM of 1.5% for the single loading movements (n=95, root-mean-square error (RMSE) 
of 15.3% for direct weight reference; n=440, RMSE=33.2% for volume reference) enables 
long-term observations considering the average value, but the high RMSE reveals problems 
with regard to the single value information.
The full forwarder load accuracy, as unit of interest, was observed with an RMSE of 10.6% 
(n=41), considering a calculated weight-volume conversion as reference value. An SEM of 
5.1% for already five observations with direct weight reference provides a good starting point 
for work-progress observation support.
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1. Introduction
Within the timber supply chain, the exchange of 

information such as work progress is of fundamental 
importance. With this information, a cost-effective and 
optimised timber supply can be enabled (Heinimann 
1999, Bodelschwingh 2006). One link in the timber 

supply chain, in addition to other timber extraction 
methods, is the forwarding process, in which logs are 
extracted to a mid-term storing site for further trans-
portation or processing. Especially within cut-to-
length operations, information about moved logs can 
be collected when the logs are entirely lifted from the 
ground. This concept is used by different manufactur-
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ers within their own logistics-information support 
systems (John Deere 2019, Komatsu 2019, PONSSE 
2019). Most commonly, separate weight-scale units 
mounted at the boom tip above the grapple are in-
stalled to gain access to the weight information. Other 
systems rely on spatially referenced harvester infor-
mation for forwarder work-progress monitoring 
(Manner 2015, Manner et al. 2016).

Despite the above-mentioned existing data-collec-
tion possibilities, accessing timber weight or volume 
information is still challenging. One problem is that 
crane scales are supplementary hardware tools and 
therefore not as common as productivity monitoring 
systems for harvesting work, which are included in 
the default machine configuration (Manner 2015). 
Therefore, investing in this additional high-accuracy 
equipment is more attractive in regions or for applica-
tions where crane scales area legal requirement 
(Brown and Ghaffarian 2016) or where their use is ac-
cepted for accounting and billing processes. This is for 
example the case in the Finnish timber industry, where 
the use of crane scales for creating a billing base with-
in the pulpwood timber supply chain is increasingly 
accepted (Petty 2014). Other European countries have 
introduced regional regulations for the use of crane 
scales in fuel wood trade practices (Landes betrieb 
Landesforsten Rheinland-Pfalz 2017), but this has not 
yet had an effect on the general availability of crane 
scales for forwarders.

With increasing digitalisation and automation of 
timber production processes, alternative and less cost-
ly approaches to retrieving log-weight information are 
being developed. One of these solutions is based on 
analysing data from the controller area network 
(CAN) of a forwarder with an artificial neural network 
(ANN). It allows to derive the moved weight primar-
ily from the inner-boom cylinder (IBC) hydraulic pres-
sure behaviour over time (Geiger et al. 2018, Geiger et 
al. 2019). Thus, no separate load cell data, but data 
provided by the IBC pressure sensor is required for 
operation. However, the used scale setup is primarily 
designed for post-processed data-streams and lacks 
the hardware required for parallel in-field data pro-
cessing. This combination inhibits its use for longer 
observation periods. As solution, intermediate storage 
of the data and later processing is necessary. To take 
advantage of this characteristic, the data may not be 
stored locally but moved to a cloud database, where 
the algorithm could be implemented as software func-
tionality. The weight information can so be provided 
as optional software service and made available for 
different user groups. The optional long-term storage 
design makes near real-time as well as retrospective 

analyses possible. To apply the system to fit currently 
available infrastructure, modification of the algorithm 
is necessary, especially to make it work with lower 
resolution data that is needed for connectivity reasons. 
With these changes made, the accuracy and the char-
acteristics of the system however must be rechecked 
as it is applied to the aimed working scenario.

This study investigated whether and to what ex-
tent an adapted version of the algorithm, implement-
ed as cloud-based crane scale service, can be used 1) 
for acquisition of single-log information and 2) for 
long-term observation purposes under real working 
conditions.

As secondary objective, special attention was paid 
to the green density (ρ) distribution of the observed 
logs, as it is used both to assess the scale accuracy and 
to support additional long-term observation applica-
tions.

2. Materials and Methods

2.1 Cloud-Databased Crane Scale (CCS) 
Functionality

The fundamental crane-scale functionality fol-
lowed the ANN design of Geiger et al. (2019) but was 
modified for higher robustness and implemented as 
cloud service to create the new, cloud-data based 
crane scale (CCS) design (Fig. 1). Similar to previous 
studies (Geiger et al. 2019), a HSM 208F F2020 for-
warder (HSM Construction 2018), equipped with a 
hybrid hydraulic transformer system (HSM Hohenlo-
her Spezial- Maschinenbau GmbH und Co. KG 2015, 
Geiger and Geimer 2017) was used as base machine.

To enhance the robustness of crane scale accuracy, 
the basic ANN (the long short-term memory network 
(LSTM)) was extended with a parallel evaluation 
branch consisting of a secondary convolutional neural 
network (CNN), based on the ideas of Devineau et al. 
(2018) and Gross et al. (2017) and demonstrated in 
Greff (2019). Further details on the functionality of the 
CNN-based crane scale can be found in Geiger et al. 
(2020). Based on the same machine data input, log 
weight is calculated by both the LSTM and CNN 
branches and is consecutively averaged. Both net-
works were separately trained under laboratory con-
ditions with logs between 4 and 5 metres in length.

The time sequence for the input data was consid-
ered between the completed log-gripping step of the 
loading movement and the retracting movement of the 
grapple with the log towards the bunk. This represents 
two of the four described loading-cycle phases de-
scribed by Geiger and Geimer (2017). The basic input 
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variables included the IBC-hydraulic pressure, the fast 
Fourier transformed IBC pressure as frequency spec-
trum, as well as the lever that changes dynamically 
with the crane position including the control signals. 
In addition, the corresponding hybrid-hydraulic sys-
tem pressures (accumulator, pump and valve pres-
sures) and the hydraulic oil temperature were re-
trieved as machine environment input variables for 
the networks. All input data was required to detect 
and extract the loading cycle from the forwarder crane 
movements and to subsequently derive log weight 
with the combined ANN.

To record the forwarder crane data from the CAN 
bus, a commercially available telematics module (STW 
TC3G) was used. Unlike the laboratory setup (Geiger 
et al. 2019), data was recorded at a lower resolution 
where only the last value in a defined time interval 
was locally stored with the timestamp given by the 
data logger system time. After local data buffering, 
data packages were uploaded to the cloud storage and 
the combined ANN was executed on a remote client 
to calculate log weight as cloud-data based crane scale 
functionality.

The cloud data quality was limited by the all-in-
one hardware data loggers employed. Timestamp re-
cordings were delayed by up to several seconds at 
higher CPU loads on the data logger. Therefore, the 
CAN signal recording was backed up with a CL3000 
raw-data logger to enable a later check of the signal 
quality. As a compromise between signal quality and 
recording resolution, two different time intervals were 
used in the field test, a 100 ms (10 Hz) and a 50 ms (20 
Hz) time interval, which both delivered satisfactory 

results in the signal analysis (Fig. A1). To further sta-
bilise data recording, all additional functionalities of 
the telematics system were deactivated during the 
study.

2.2 Study Site and Layout
The CCS tests were conducted in a typical forward-

er work environment and took place near Eibenstock, 
located in the province of Saxony, Germany, from 26 
March to 12 April 2019. The stand was dominated by 
Norway spruce (Picea abies) with interspersed indi-
viduals or groups of pine (Pinus sylvestris) and larch 
(Larix decidua). The harvesting intensity was pre-
defined by a previous wind throw, which had oc-
curred on 10 March 2019 in the Saxonian state forests 
(Sachsenforst). The throws were characterised by a 
mainly single-tree to group-wise de-rooting or crown 
breaking across all tree species. Spruce trees that had 
been infested with bark-beetle (Ips typographus) the 
previous year were extracted in the southern and east-
ern part of the study area (Fig. A2). All trees had been 
previously processed, and logs had been pre-concen-
trated by a harvester. Processing was conducted with 
a constant five-to-seven-day lead on extraction by the 
forwarder.

To evaluate the scale accuracy, the calculated 
weight was compared to different reference values. As 
the scale may be used for both obtaining single-log 
information and performing long-term machine ob-
servation, it must either fulfil high accuracy require-
ments for single values or must have an acceptable 
average error with a high number of repetitions. Both 
direct reference weighing and volume measurements 

Fig. 1 Layout of the designed cloud-data based crane scale, consisting of a telematics module as controller area network (CAN) interface 
and for intermediate storage, combined with the concept of retrospective executions of two separate scale algorithm types (convolutional 
neural networks (CNN) and long short-term memory (LSTM) networks) on cloud data
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were performed. As volume measurements are easier 
to perform than direct weight reference measure-
ments, a larger size sample could be collected. To de-
termine the weight-to-volume conversion accuracy for 
up scaling, local green densities were surveyed and 
change in density over time was monitored (Fig. 2). 
Three different reference values were considered: 
Firstly, the direct weight reference, secondly, the vol-
ume reference, based on a general density conversion 
factor, and thirdly, the best weight reference for large 
sample sizes, which considered tree species differ-
ences, as well as green density change over time and 
density reducing factors (bark beetle infestation).

Considering the weight and volume reference 
measurements, the forwarding information was docu-

mented in different resolutions (Var. 1–5, Table 1). In 
all cases, the logs were manually measured for length 
and diameter after an extraction cycle was completed. 
Start and end time (ends before unloading) of each 
forwarding cycle were recorded to manually identify 
the forwarding process in the dataset and to check for 
unobserved loading movements. To document the 
loading order (Var. 3–5), the logs had been previously 
numbered, and the number and count of the logs 
grappled during the loading movement were noted. 
In Var. 5, each log was separately weighed with an 
external crane scale (Kern HTS 1.5 t, with a verification 
value of 0.5 kg (Kern 2017)) by choking it with a sling, 
lifting, and weighing it in a static manner. A total of 
1608 logs were measured in 44 forwarding cycles. In 

Fig. 2 Data collection and processing layout for weight-and volume-reference measurements: (1) direct weight-reference strand (white), (2) 
volume-conversion strand for large sample size evaluation (grey), both providing the best weight reference (black) and (3) observation of 
density change over time (light gray)
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addition, 135 logs were separately weighed for evalu-
ation. All tree species other than spruce were weighed 
separately or reference.

An operator change was necessary midway 
through the study (29 March 2019). The second opera-
tor was less experienced; thus this can be considered 
as potential change in working behaviour (Purfürst 
2010). For this reason, a video analysis of the crane 
work was conducted for an additional six forwarding 
cycles to reveal potential systematic errors of the crane 
functionality and the operator’s loading movement 
peculiarities. The observed parameters included grip-
ping point of the log (central, asymmetric) and load 
movements during the loading phase (rotating, dy-
namic loading with resulting pendulum motion). The 
gripping point of the log was defined as asymmetric 
with a grapple position in the outer third of the log 
length, while rotation referred to horizontal 120-de-
gree turns of the load. To be counted as dynamic load-
ing, an estimated oscillating 20-degree vertical offset 
of the load in opposite directions had to be observed.

2.3 Volume Conversion Factors
Volume conversion factors were obtained from the 

direct-reference weighing data of Var. 5 (Table 1). 
From this data, an average green density value was 
calculated. Within five cycles (No. 35–39), logs cut 
from trees that had been infested with bark beetle dur-
ing the previous year were extracted. To account for 
their dried state, a separate conversion factor was de-
termined. To estimate errors at single-log level in the 

volume-based scale assessments, the green density 
distribution for the spruce data (n=7) was modelled as 
a fitted normal distribution in a Monte Carlo simula-
tion. This helped to assess the error development in 
relation to the number of observations.

Green density changeover time was investigated 
by repeated weighing of two groups of five logs, each 
stored near the forest road (Group A) and inside the 
forest stand (Group B, Table A1, Fig. A2), every work-
ing day. Weighing started simultaneously with the 
CCS field test six days after processing the trees. Dur-
ing the observation period, 2 mm precipitation (6.3 °C 
mean air temperature, 92% relative air humidity, 1.76 
m s-1 average wind speed) were noted between 26 and 
28 March at the meteorological station at Bergen, Sax-
ony, 15 km from the study area (lat. 51.46°, long. 
14.23°). From 28 March to 12 April, no more precipita-
tion was recorded, and air temperature and wind 
speed rose to averages of 8.6 °C and 1.86 m s-1. After 
peaking at 100% during the nights, relative air humid-
ity dropped to an average of 67% on 30 March (Säch-
sisches Landesamtfür Umwelt, Landwirtschaft und 
Geologie (LfULG 2019)).

2.4 Statistical Analyses
All statistical analyses were performed using the 

statistics software R (The CRAN R-Project 2020). Sam-
ples were tested for normality with the Shapiro-Wilk 
test and for equality of variances with Bartlett’s test. 
Groups were compared by pair wise t-test, or a Wil-
coxon test was performed in case of a missing normal 

Table 1 Overview of forwarding operation characteristics and recorded parameters for forwarding-cycle observation variation 1 to 5 during 
field test near Eibenstock

Var. 1 Var. 2 Var. 3 Var. 4 Var. 5

Number of forwarding cycles 1 21 3 14 5

Number of loading cycles NA NA 92 270 99

Number of single logs 100 878 92 403 135

Operator 1 X X – – –

Operator 2 – X X X X

Tree species PA PA, PAB (1) PA, PAB (5) PA, PAB (1) LD, PS, PA, PAB (1)

Log diameter X X X X X

Log length – X X X X

Multi-log loading X X – X X

Loading order – – X X X

Real reference weight – – – – X

Video reference – – – (X) (X)

Saxony; tree species are abbreviated as LD (Larix decidua), PS (Pinus sylvestris), PA (Picea abies), PAB (Picea abies – bark beetle, including the number of logs)
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distribution. For multiple comparison, Dunnett’s test 
was used.

The accuracy of single value information of the 
scale output was characterised by the root-mean-
square error (RMSE) considering different references. 
For multiple value evaluation of the scale output, the 
standard error of means (SEM) was calculated to ac-
count for larger sample sizes.

3. Results

3.1 Green Density Distribution and Error
Significant differences in green density (Fig. 3) 

were observed between freshly cut spruce logs and 
logs from the bark-beetle infested area (p<0.001). This 
shows that a further separation of these groups is nec-
essary to ensure higher conversion accuracies when 
applying weight-to-volume conversion factors.

The green density distribution of the spruce subset 
was later used as weight-to-volume conversion factor 
(same sample as Fig. 3) and is visualised in Fig. 4 as 
kernel density distribution (recording date: 1–2 April). 
The entire spruce dataset with reference recordings has 
a standard error of means (SEM) of 13.6 kg m-3 (1.5%, 
n=77) at a mean of 906 kg m-3. To obtain more informa-
tion about data consistency, a further subset of green 
densities was drawn from the Var. 5 measurements. 
The subset is described by a SEM of 19.0 kg m-3 (2.0%, 
n=46) and a mean density of 933 kg m-3. Only marginal 

deviations from normal distribution were observed, 
regardless of the sample sizes. However, mean densi-
ties and log diameters varied (29.2 cm for the whole 
spruce dataset and 28.3 cm for the Var. 5 subset).

To estimate the error expected from uncertainties 
of green densities, a Monte Carlo simulation between 
the real observed and predicted densities drawn from 
a normal distribution was performed, described by a 
mean of 906.2 kg m-3 and a standard deviation (SD) of 
119.6 kg m-3. The resulting RMSE was 10.7 kg m-3 or 
1.2% of the mean green density for 10.000 simulations 
of the sample with a size of 77 (Fig. A4).

3.2 Change of Green Density over Time
During the 18 days from day 6 to 23 after the pro-

cessing of trees into logs, an overall mean density loss 
of 3.1% (27.61 kg m-3), corresponding to an average 
density loss of –1.4 kg m-3 or –0.16% per day (Fig. 5), 
was observed. The mean error of green density change 
per day was 0.07 kg m-3 with a 0.43% mean error be-
tween the average log differences. Snow fall resulted 
in an average, arithmetical green density increase of 
17.75 kg m-3 (2%) and a larger between-log variation 
(1.9 kg m-3 to 36.19 kg m-3) on 26 and 27 March.

No significant differences were observed for the 
change of green density over time between the two 
storage locations (Wilcox, p=0.340). Nonetheless, a ten-
dency towards higher variation caused by greater ex-
posure to precipitation was observed at the storage 
location close to the forest road, as indicated by the 
peak in Fig. 5. A slightly higher basic variation was 
noticed at the storage location inside the forest, with-
out any obvious connection to meteorological influ-
ence factors.

3.3 Reference Weights and Conversion Factors
From the previous results, three references for the 

CCS evaluation were established, following the pro-
cedure described in Fig. 2: 1) Real mass, obtained by 
separate weighing of logs under real working condi-
tions, 2) General volume-weight reference, where a 
mean green density (906 kg m-3 (basic error of 1.2% 
(RMSE)) for spruce) was verified and applied as a gen-
eral conversion factor regardless of species, and 3) Best 
weight reference, where the volume conversion for 
spruce was enhanced by considering the lower green 
density (684 kg m-3) of logs from bark-beetle infested 
stands. In addition, pine and larch logs were refer-
enced with their real mass in the related forwarding-
cycle evaluations.

3.4 Individual Loading Movement CCS Accuracy
In Fig. 6, the weight estimates of the CCS for the 

Var. 3 to 5 data sets are compared to the references for 

Fig. 3 Green densities observed within the study period, with aver-
ages of 907 kg m-3 for larch (light grey, left), 1051 kg m-3 for pine 
(light grey, right), 906 kg m-3 for all fresh spruce logs (dark grey) and 
684 kg m-3 for spruce considering previous bark-beetle infestation 
(white)
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individual loading movements. Low errors show that 
the estimates generally coincide well with the refer-
ences. The highest congruence was observed for the 
real mass reference, while the general weight-to-vol-
ume reference tended to underestimate the weight of 
larger loads. Where different tree species and the effect 
of bark-beetle infestation on green density were con-
sidered, deviations could be reduced in some cases. 
Respective error statistics for all references are dis-
played in Table 2.

3.5 Full Forwarder Load CCS Accuracy
In general, the CCS achieved higher accuracy on 

full forwarder load references (Fig. 7). The respective 
statistics are displayed in Table 3. All volume-based 
results showed that the accuracy of estimates was con-
siderably enhanced when forwarding cycles with 3 m 
log assortments only were not considered. Finally, the 
RMSE of the best reference variant matches the real-
mass reference (n=5) RMSE with both achieving the 
desired whole-load estimation accuracy.

Fig. 4 Kernel density plots of observed green densities and respective diameter distributions of weight-reference logs for (a, b) spruce dataset 
(n=77) and (c, d) a subset drawn from Var. 5 data with a lower mean diameter (n=46)
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Fig. 5 Green density development of reference logs (Picea abies) 
over the observation period; near forest road (Group A, black, 
dashed line), inside forest stand (Group B, grey, dashed line) and 
their combined daily mean (solid black line) with variation (back 
ground boxplots for both groups)

Fig. 6 Comparison of CCS results to reference weights (best refer-
ence mass, general volume converted mass (906 kg m-3) and mea-
sured real mass) for Var. 3–5 datasets on individual loading move-
ments

Table 2 Comparison of errors for individual loading movements for three different references

Real mass reference (n = 95) General density conversion (n = 440) Best weight conversion (n = 440)

Average CCS output per loading movement, kg 377.6 359.5 331.2

RMSE, kg 57.9 (15.3%) 119.5 (33.2%) 89.7 (27%)

SEM, kg 5.7 (1.5%) 5.4 (1.5%) 4.3 (1.3%)

SD, kg 55.7 (14.8%) 113.8 (31.7%) 89.3 (27%)

Fig. 7 Cumulative weight estimate of the CCS for full forwarder loads for all observed cycles (n=44) with two different weight references: 
(a) general density conversion (906 kg m-3) and (b) best weight reference. A separate visualisation of 3 m log assortments shows a system-
atically higher error in weight estimate and supports the resulting increase in accuracy when this assortment is not considered
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Table 3 Error comparison of whole forwarding cycles considering different weight-to-volume conversion types

Real mass reference 
(n = 5)

General density 
conversion (n = 44)

General density conversion 
without 3 m logs (n = 41)

Best weight conversion 
(n = 44)

Best weight conversion 
without 3 m logs (n = 41)

Avg. CCS output 
per forwarding 
cycle, kg

7261.1 9030.6 9194.2 8750.3 8893.4

RMSE, kg 780.5 (10.7%) 1795.1 (19.9%) 1383.0 (15%) 1504.6 (17.2%) 940.8 (10.6%)

SEM, kg 372.2 (5.1%) 270.9 (3%) 218.7 (2.4%) 214.9 (2.5%) 142.6 (1.6%)

SD, kg 832.4 (11.5%) 1976.6 (19.9%) 1400.1 (15%) 1425.8 (16.3%) 913.0 (10.3%)

Fig. 8 Observation of all forwarding cycles containing single-loading reference weights (Var. 3–5, all loading movements) in (a) direct com-
parison of different references, considering the main weight-volume conversion types: (b) real mass reference, (c) best weight reference and 
(d) general density conversion reference, at a green density of 906 kg m-3
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Contrary to the individual loading movement ob-
servations, it is noted that all recorded cycles (Var. 1 to 
5) of both machine operators were included in the 
analysis.

In Fig. 8, the datasets for individual loading move-
ments as well as for full forwarder loads are displayed 
in combination to visualise the summarised error for 
single forwarding cycles. Only data for operator 2 is 
considered, with a maximum of 22 forwarding cycles 
and 440 logs (loading movements) for the volume-
conversion methods, and a minimum of 4 forwarding 
cycles and 95 logs for the real-weight reference data. 

The effect of reducing the CCS error by using more 
accurate conversion factors is particularly noticeable 
when the datasets of cycle 35–39 for the best weight 
and general conversion variants are compared.

3.6 Operator Effect on CCS Accuracy
A video analysis was performed to investigate the 

operator effect on CCS accuracy. The assessment 
based on data for operator 2 included six cycles (26, 
29, 30, 31, 41, 42) and 165 separate loading movements. 
The effect of the observed differences in loading be-
haviour on the CCS output are shown in Fig. 9. Only 

Fig. 9 Effects of loading behaviour on CCS weight-estimation accuracy for the (a) number of logs, grappled, (b) position of the grapple during 
loading movement, (c) observed rotation of the load while loading and (d) dynamics in the loading process with pendular movement
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the number of logs grabbed per loading movement, 
especially when comparing gripping of a single log 
and multiple logs, had a significant impact on the out-
put error of the scale (p=0.002). The other parameters, 
such as gripping point (p=0.210), rotation of logs dur-
ing loading (p=0.360) and dynamic loading (p=0.318), 
showed no statistically significant influence.

4. Discussion
The main goal of the study was to develop and test 

a field-applicable, low-cost weight information system 
for forwarders to support logistics monitoring of the 
forwarding process within the timber supply chain. 
The study showed the potential feasibility of applying 
such a system with a commercially available telemat-
ics system and a connected cloud database. The ap-
plied weight-estimation algorithm, which was based 
on two artificial neural networks for this setup, 
showed varying results depending on the resolution 
of observation.

Results related to the determination of the volume 
conversion factor may contain valuable additional in-
formation that could be used for scale applications, i.e. 
in combination with productivity monitoring (Gull-
berg 1997, Jiroušek et al. 2007, Eriksson and Lindroos 
2014, Manner 2015). The observed average green den-
sity of 906 kg m-3 (SEM=13.63 kg m-3, n=77) showed a 
good normal distribution for all observations. When 
previously infested bark-beetle logs (and other tree 
species) can additionally be separated, for example 
with supportive information systems (Geiger et al. 
2020), measurements with a SEM of 1.3% are possible. 
This low SEM, together with an RMSE of 1.2% as sim-
ulated conversion error goes in accordance with the 
findings of Hultnäs (2013), who predicted the green 
density of Norway spruce pulpwood in Sweden with 
similar findings. The assumption that the wood densi-
ties of highly water-saturated logs with a water con-
tent of up to 60%, as noted in Fortuin (2006), vary less 
than for dried logs because of the higher impact of the 
dried density distribution requires further attention, 
but may explain the small errors found for average 
green densities.

The observed green densities contradict the find-
ings of Landesbetrieb Landesforsten Rheinland-Pfalz 
(2017, 800 kg m-3 for spruce), which highlights the ne-
cessity of obtaining more accurate conversion factors. 
One possible approach for providing more suitable 
tables was presented by the Natural Resource Institute 
Finland (Luke 2015), where density ranges are related 
to other influencing factors, which considerably en-
hance the accuracy for dried assortments in the case 

of this study (<1% difference in comparison to the 
dried bark-beetle assortments).

The drying rates of 0.16% per day are below the 
accuracy of simple monitoring systems and thus may 
not be considered for shorter observation periods, 
given that the microclimate effects of air humidity, 
temperature (Tiţă et al. 2019) and precipitation effects 
like snow (+2% observed weight gain) do not exceed 
the observed parameters.

Using the adopted scale algorithms in a cloud ap-
plication proved to be technically feasible and pro-
vided evaluable results. Thus, the tested CCS system 
can potentially be used for various application cases 
where the temporal resolution of a remotely setup 
cloud information system fits the application type. The 
system must thus be assessed for either single-unit er-
ror or long-term observation error with a higher num-
ber of repetitions. For the former, the RMSE is a suit-
able reference value, as single high errors are 
emphasised in its calculation and so become visible. 
For long-term observation purposes, the SEM serves 
as performance indicator for the grouping possibility 
considering the average error development.

In this study, a low SEM of the scale for single load-
ing movements on large sample sizes (1.3–1.5%) and 
for whole-forwarder loads (1.6%, best weight refer-
ence, 5.1%, real mass reference) was observed. These 
results confirm the suitability of the system for long-
term observations, where the error of single values is 
not separately considered.

The use of a fitted volume-conversion factor is es-
pecially valuable. With this method, the scale accuracy 
resulted in an overall error of 5.4 kg per moved log 
(1.5%) or 270.9 kg (3%) for a full forwarder load obser-
vation (SEM). This offers the possibility to, for exam-
ple, use the CCS in combination with a general but 
locally fitted volume reference for time studies with a 
higher number of observations.

However, conventional scale errors are exclusively 
related to single observations (Petty and Melkas 2013). 
In this case, the CCS setup shows strong limitations in 
comparison to conventional systems. In contrast to the 
laboratory accuracies (Geiger et al. 2019), the error of 
the scale (real-weight reference) under real working 
conditions and the different data-collection setup re-
sulted in a much higher RMSE of 57.9 kg or 15.3% 
(n=95) for loading movements. When increasing the 
number of observations and using the volume-conver-
sion factor instead of the measured real weights, the 
single-log error rose to 119.5 kg (33.2%, n=440). Even 
when using the more accurate volume-conversion fac-
tor, the uncertainty of the output remained relatively 
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large at 89.7 kg (27%, n=440) for one loading move-
ment.

As a result of the averaging effect, the values for 
whole forwarder load observations became more reli-
able, depending on the reference value. When the gen-
eral volume conversion is enhanced by considering 
previously bark-beetle infested stems with the accord-
ingly smaller green densities, the RMSE could be al-
most halved (10.6%) compared to the general volume 
conversion for all assortments (19.9%) for whole loads. 
The algorithm thus achieved the same accuracy as the 
real mass reference, obtained with the reference scale 
(10.7%), and is thus more suitable for full-load charac-
terisation.

Video analysis showed that log weights calculated 
from the CCS are generally overestimated with short-
er log length in relation to the smaller diameters (aver-
age of 18.3 cm of 3 m logs towards 28.5 cm for 4 m and 
5 m logs). This trend is also visible in Fig. 4, where a 
subsample was drawn in the small diameter range and 
the results suggest a trade-off between density and 
diameter. This is in accordance with the diameter-re-
lated densities of the Finnish wood trade guidelines 
(Natural Resource Institute Finland (Luke), 2015) and 
was previously described for dry densities by Repola 
(2006). When this effect is considered by excluding the 
3 m log forwarding cycles, the RMSE of the dataset 
decreased by 4.9–6.6% (general volume – best refer-
ence conversion) for full forwarder loads.

The observed parameters log rotation, dynamic 
loading and gripping point showed no significant in-
fluence on the scale accuracy (Fig. 9) and underlines 
the basic robustness of the system. However, it was 
noticed that the single errors tend to decrease with 
higher variation in the loading movement.

Overall, the scale setup showed itself to be less ac-
curate in the field than in the laboratory test by Geiger 
et al. (2019).The calculations with the ANN make a 
distinct separation of influencing parameters difficult. 
The nature of log-pile manipulation under real work-
ing conditions could be one reason. Further, catching 
of branches or logs could have affected the algorithm 
output, but may not have been discovered in the video 
analysis. Another problem could be found in influenc-
ing factors on the technical equipment related to cloud 
functionality and the reduced data frequency. The 
signal delays, which appeared during the data-log-
ging task, may be there for increasing the output error 
in some cases, but in an unknown manner. With the 
higher processing power of more modern telematics 
systems, these errors may become increasingly negli-
gible in future applications. With additional and dif-
ferently applied types of this crane scale in terms of 

hardware and ANN setups, behaviour schemes of the 
crane scale type will help to separate influencing fac-
tors in the functionality of the scale and will help to 
further characterise and improve the concept.

5. Conclusions
This study showed the feasibility of implementing 

a cloud-data based crane scale layout to collect for-
warding information during the loading phases in a 
self-contained manner. It proved possible to execute 
the ANN algorithm on a previously generated low-
resolution database with satisfying results.

An initial assessment of the CCS accuracy for both 
long-term and single-load observations could be pro-
vided. The low SEM of 1.5% indicated that long-term 
observation is possible, both in terms of weight and 
volume, in case of the latter when local green wood 
densities are known. The repeated observation of low 
error levels together with the stability of the system 
regarding external influences emphasizes the poten-
tial usability of the system. It could support estab-
lished systems by, for example, creating a wider data-
base of green densities, or machine or operator 
performance evaluations to support contractors.

To be considered a reliable single-log information 
source, the CCSs observed RMSE of 15.3% may be too 
large. Based on individual forwarding cycles, the for-
warding progress can be described with an RMSE of 
11% (SEM 5.1% for real-weight reference). In cases 
where the aim is to employ the system in legally bind-
ing applications like truckload surveillance or as a 
trade base, the system currently cannot be considered 
accurate enough. As a basic information source for 
fleet management systems and as a supporting data 
source, however, it may present an alternative to exist-
ing systems (crane scale), albeit with limitations.
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Fig. A1 Tolerated, characteristically varying signal delay between 
cloud-data setup (black) and raw signal recording (grey)
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Fig. A2 Study site location in eastern Germany (centre at lat. 50.486°, long. 12.488°) showing recorded forwarder movement (grey) during 
testing period, with separated »Var. 5« loading cycle extend (black) where weight references for density measurements are taken. Furthermore, 
the reference log locations of »Group A« (west) and »Group B« (east) are visualised for observations of density change over time

Table A1 Characteristics of observed logs (over time) containing diameter [cm], length [m] and mean weight and density of observed values

Group A Group B

Log 1 Log 2 Log 3 Log 4 Log 5 Log 6 Log 7 Log 8 Log 9 Log 10

Diameter, cm 25.5 29 36.5 33.5 30 28 38 38.5 39.5 38.5

Length, m 5.14 4.08 4.11 4.10 5.11 4.15 4.15 4.08 4.09 4.07

Mean weight, kg 244 246 376 338 335 224 393 355 415 415

Mean density, kg m-3 929 912 875 937 927 878 836 747 827 876
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Fig. A4 RMSE distribution of observed and predicted green wood 
densities for spruce (Monte Carlo Simulation with 10.000 simula-
tions, mean=906.2 kg m-3, SD=119.6 kg m-3)

Fig. A3 Group A of reference stems storage for observing weight development over 18-day logging period, recorded on 27 March 2019 
after night snowfall
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