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Abstract

Drying forest biomass at roadside can reduce transport costs and greenhouse gas emissions 
by reducing its weight and increasing its net calorific value. Drying models are required for 
forest supply chain analysis to determine optimum storage times considering storage costs 
and returns. The study purpose was to evaluate the impact of the source of meteorological data 
on the goodness of fit and practical application of Eucalyptus nitens log pile drying models. 
The study was conducted in Long Reach, NE Tasmania, Australia from the 6th of February to 
6th of August 2020. Four data sources were compared: the nearest meteorological station, in-
terpolated meteorological data, a portable weather station, and digital temperature/RH sensors. 
Predicted moisture content (MC) values from the only previously published E. nitens log pile 
drying model were also evaluated using the current study data sources as inputs.
Log pile MC changes were determined from weight changes measured by placing the study logs 
on a steel frame bolted to load cells at each corner. As the study was based on debarked logs, dry 
matter losses were assumed to be negligible. Initial MC of the logs was determined by extracting 
samples using an electric drill and drying them until constant weight was achieved.
Initial log pile drying rates were high with several daily MC  losses >2%. Portable weather 
station data produced the best goodness of fit drying model. The second-best goodness of fit 
model was based on meteorological station data. From a user acceptability perspective (highest 
proportion of results within ±5% of measured values), the best model was based on tempera-
ture/RH sensor data. Goodness of fit measures for the temperature/RH sensor data model were 
poorer than for the other data sources, but still acceptable. The published E. nitens log drying 
model had the poorest results for goodness of fit and user acceptability.
In conclusion, portable weather stations are best suited to research trials due to the expense of 
placing a weather station at each log pile. Drying models based on data from the nearest me-
teorological station or temperature/RH sensors are best suited for practical applications, such 
as forest supply chain analysis. Additional benefits could accrue from a forest estate-wide 
network of low cost temperature/RH sensors potentially supplying data to forest supply chain 
analysis as well as fire prediction and tree growth models.
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1. Introduction
Cost efficiencies are critical to the success of forest 

biomass supply chains (Cambero and Sowlati 2014). 
Weight reduction and increased net calorific value fol-
lowing natural drying of stored log and forest biomass 
piles can substantially reduce secondary transport 

costs (Strandgard et al. 2021a), which can account for 
>40% of delivered costs (Rodriguez et al. 2011, 
 Ghaffariyan et al. 2013) and reduce transport-related 
greenhouse gas emissions. Conversely, stored logs 
and forest biomass can incur dry matter losses from 
decay or physical losses (Jirjis 2005, Nilsson et al. 2015) 
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and costs, through payment deferment during storage 
(Acuna et al. 2012), return of equipment to the site to 
load trucks or feed chippers (Lin et al. 2016) and delaying 
of site preparation and re-establishment (Richardson 
et al. 2002).

The complexities associated with designing forest 
biomass supply chains have resulted in the develop-
ment of numerous supply chain models (Shabani et 
al. 2013, Cambero and Sowlati 2014, Acuna et al. 2019), 
few of which include consideration of natural drying 
( Strandgard et al. 2019). Predicted cost savings from 
natural drying can be substantial, for instance, 
 Strandgard et al. (2021b) modelled delivered cost sav-
ings of up to 30% from roadside drying of Eucalyptus 
globulus logging residue and whole trees. Real-world 
savings are likely to be less than those predicted as 
supply chain models are a simplification of reality and 
typically assume perfect knowledge (Shabani et al. 
2014). The lack of consideration of natural drying in 
supply chain models is partly explained by the lack, 
until recently, of tools and techniques to incorporate 
highly granular meteorological data to enhance moisture 
content prediction as well as the high cost and time - 
consumption involved in drying model development.

Prevailing weather conditions are the major driver 
of the rate of natural drying of logs and forest biomass 
(Erber et al. 2014). Other factors include: species, log 
size, debarking, pile size, and pile covering (Stokes et 
al. 1987, Pettersson and Nordfjell 2007, Röser et al. 
2011, Lin and Pan 2013, Klepac et al. 2014, Visser et al. 
2014). The majority of published log and biomass 
roadside drying models were developed for northern 
hemisphere species and conditions (Strandgard et al. 
2019) with few published models for species grown 
extensively in the southern hemisphere, including 
Pinus and Eucalyptus spp., e.g. (Strandgard and Mitchell 
2017, Strandgard et al. 2020). The species studied in 
the current paper, E. nitens, is a major southern hemi-
sphere plantation species for which there is one pub-
lished log drying model, based on a study in southern 
Chile (Bown and Lasserre 2015).

Most roadside log and forest biomass drying mod-
els have been derived from weather variables recorded 
using onsite weather stations, whereas operational ap-
plication of the drying models typically relies on data 
from the nearest meteorological station which may be 
≥10 km from the stored material, particularly in for-
ested areas. Given that weather variables can vary con-
siderably temporally and spatially (Erber et al. 2017, 
Grimmond et al. 2000, Ma et al. 2010), insufficient re-
search has been conducted to evaluate the impact of 
different sources of meteorological data on the accuracy 
of MC prediction of log and forest biomass piles drying 

at roadside and the implications of each data source on 
practical implementation of the drying models.

The objectives of the paper were to compare the 
goodness of fit (model fit to observations) and fitness 
for purpose (degree at which user requirements were 
met) of natural drying models for a pile of drying E. 
nitens logs developed using meteorological data from 
a range of sources:

⇒  the nearest Bureau of Meteorology (BOM) 
weather station

⇒  interpolated BOM weather data (SILO)
⇒  data from a portable weather station adjacent to 

the pile
⇒  digital temperature and relative humidity sen-

sors in the pile
and to test the predictive accuracy of the Bown and 
Lasserre (2015) log drying model MC estimates calcu-
lated using meteorological data collected in the cur-
rent study. Consideration was also given to the opera-
tional implementation of the models based on each 
data source.

2. Materials and Methods

2.1 Experimental Design
The natural drying study took place at the Forico P/L 

Long Reach Mill in north-east Tasmania (41° 10’ 12”S, 

Fig. 1 Map showing approximate locations of study site (grey star 
near Long Reach) and nearest meteorological weather station (grey 
circle near Low Head)



Evaluating the Impact of Meteorological Data Sources on Moisture Prediction Accuracy ... (337–346) M. Strandgard et al.

Croat. j. for. eng. 44(2023)2 339

146° 55’ 48”E) (Fig. 1) between the 6th of February and 
6th of August 2020 (182 days) to examine drying from 
summer through to winter. The gravel-based site 
sloped slightly to the south (<5°) and was clear on all 
sides of the log pile for ≥15 metres. The closest vegeta-
tion was 5–6 metres high. Long term mean annual 
precipitation at the site was 675 mm and monthly 
mean maximum and minimum temperatures were 
between 12.8–21.1°C and 6.9–14.6°C, respectively.

The debarked E. nitens logs were harvested ap-
proximately seven hours prior to the trial (Table 1). The 
major cause of the delay in transporting the logs was 
the need to fit the small load of trial logs into the truck 
delivery schedule. Initial MC of the logs was deter-
mined from 30 wood samples obtained with a battery-
operated drill from a range of locations along the logs 
and log sizes. Sample MCs were determined by drying 
samples at 103°C until constant weight was achieved. 
All MC values were expressed as a percentage on a wet 
basis.

Table 1 Parameters of the trial E. nitens logs

Parameter Value

Number of logs 24

Mean length, m 11.9

Mean large end diameter, mm 265

Initial MC, % 52

Initial weight of logs, t 11.86

2.2 Log Pile Moisture Content
The initial weight of the logs (11.86 t) was mea-

sured by the Long Reach mill weighbridge. The logs 
were placed on an automated weighing platform which 
consisted of a metal frame (length: 6 m, height: 2 m, 
width: 3 m) (Strandgard et al. 2020). The frame was 
bolted to double ended shear beam load cells 
(Hanzhong Quan Yuan Electronic Co Ltd Load cell 
model QH-43B). Load cell voltage readings were con-
verted to digital values (ADS1115 16-Bit ADC) and 
recorded every four hours on a Raspberry Pi 1 A+ 
(www.raspberrypi.org). At each time of measurement, 
the voltage was measured at one second intervals for 
one minute to reduce the chance of spurious readings. 
Data files were sent to a remote FTP server using the 
3G mobile phone network and converted to weight 
values. Weight changes were assumed to only result 
from changes in the MC of the logs. As the logs were 
delimbed and debarked prior to delivery, physical 
losses were likely to be minimal.

2.3 Meteorological Data
Meteorological data for the study period were 

 obtained from the nearest Australian Bureau of 
 Meteorology (BOM) weather station, the SILO inter-
polated weather database (https://www.longpaddock.
qld.gov.au/silo/), a portable weather station adjacent 
to the log pile and temperature and relative humidity 
(RH) sensors in the log pile. All models were based on 
daily meteorological data.

2.3.1 BOM Weather Station Data
The nearest BOM weather station to the study site 

was at Low Head (Latitude: –41.05, Longitude: 146.79) 
(approximately 15.8 km distant) (Fig. 1). Daily values 
of the following data were obtained for the Low Head 
site: evapotranspiration, rainfall (9 AM to 9 AM and 
midnight to midnight), maximum and minimum tem-
perature and RH, average 10 m wind speed, solar ra-
diation. The 9 AM to 9 AM rainfall data were recorded 
from 9 AM the previous day to 9 AM of the day the 
rainfall was reported. Midnight to midnight rainfall 
data were derived from half-hourly rainfall data for 
the day the rainfall was reported, which are available 
from the BOM for a fee.

The SILO weather database provides meteorologi-
cal data at point locations within Australia interpo-
lated from nearby BOM weather stations. Daily values 
for the following data were obtained for the study site: 
maximum and minimum temperature (°C), RH (%) at 
the maximum and minimum temperature, 9 AM to 
9 AM rainfall (mm), evaporation (mm), solar radiation 
(MJ/m2), vapour pressure (hPa) and evapotranspira-
tion (mm).

2.3.2 Portable Weather Station
The portable weather station was installed three 

metres from the log stack. The weather station record-
ed mean wind speed (km/h) at 2 m height, wind direc-
tion, rainfall (mm), temperature (°C) and RH (%) at 
ten-minute intervals. Weather station components 
were a Davis 7911 anemometer, a SHT20 temperature 
and RH sensor in a Davis radiation shield and a Renke 
tipping bucket rain gauge (resolution 0.2 mm). Data 
were recorded using a Raspberry Pi 1 A+ and transmit-
ted via the mobile phone network to a remote FTP site. 
Modelling was based on daily mean wind speed, 
maximum and minimum temperature and RH and 
daily rainfall.

The weather station data collection software was 
based on the Raspberry Pi Foundation’s Weather 
 Station (https://projects.raspberrypi.org/en/projects/
build-your-own-weather-station).

file:///C:\Users\stran\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\ZPC9BXLH\www.raspberrypi.org
https://www.longpaddock.qld.gov.au/silo/
https://www.longpaddock.qld.gov.au/silo/
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2.3.3 Temperature and Relative Humidity Sensors
Four battery-powered sensors were used to mea-

sure the temperature (°C) and RH (%) in the log stack. 
The design was based on the »Cave Pearl Data  Logger« 
(Beddows and Mallon 2018) and consisted of an Ar-
duino Pro Mini clone (8 MHz, 3.3 v), a real-time clock 
module and a SHT20 temperature and RH sensor 
powered by a 18650 2600 mAh Lithium-ion battery. 
Temperature and RH readings were recorded on a 
mini SD card every ten minutes.

The temperature and RH sensors were placed 
amongst the logs at four positions along the log pile. 
To avoid false readings from the sun directly striking 
the temperature/RH sensor, each sensor was placed 
where it was shaded by logs.

Data were recorded for the complete study period 
by only one temperature/RH sensor as the battery 
power was exhausted within two to three months for 
the other three sensors. Future versions would re-
charge the battery using a small solar panel.

2.4 Statistical Analysis
Log drying models were developed from each set 

of meteorological data using linear regression analysis 
(Minitab v.19 (www.minitab.com)). The dependent 
variable was the daily change in log pile MC (∆MC). 
For each meteorological dataset, independent vari-
ables were selected using the Minitab linear regression 
»Best sets« function. For the Low Head BOM meteo-
rological dataset, the »Best sets« function was run with 
three variations of the rainfall data: the 9 AM to 9 AM 
rainfall data, the 9 AM to 9 AM rainfall moved back 
one day as 15 of the 24 hours covered occurred on the 
previous day, and the midnight-to-midnight rainfall. 
For the SILO meteorological dataset, the »Best sets« 
function was run with the 9 AM to 9 AM rainfall data 
and the 9 AM to 9 AM rainfall moved back one day.

The best fitting regression model for each meteo-
rological dataset was selected on the basis of the mod-
el meeting the assumptions of linear regression and 
having the highest R2

adj and lowest standard error of 
the regression (S) with the least number of variables. 
Minimising the number of variables reduces the 
chance of overfitting and simplifies application of the 
model. All variables were statistically significant 
(p<0.05) and had a Variance Inflation Factor (VIF) <5 
(low multicollinearity). The best fitting drying models 
for each meteorological dataset were compared on the 
basis of their R2

adj, S and mean absolute error (MAE) 
between measured and predicted MC values. Models 
were also assessed on their ability to meet user accu-
racy requirements, which were set to ±5% based on the 
requirements of forest energy businesses in Finland 

(Routa et al. 2015) as there has been no equivalent 
 Australian analysis of forest energy businesses.

Log diameter has been found to be inversely related 
to log drying rate (Defo and Brunette 2007, Visser et al. 
2014) though Bown and Lasserre (2015) found in their 
study that log diameter had little effect on drying rates 
for E. nitens logs. Based on this finding and the imprac-
ticality of measuring log diameters in roadside log 
piles, the authors decided to exclude log diameter 
based variables from models in the current study.

The Bown and Lasserre (2015) E. nitens log drying 
model uses mean daily temperature and RH values 
and the number of logs per square metre to predict 
daily change in the MC of a log pile. Meteorological 
data recorded during the current study were used as 
inputs into the model to predict ∆MC. Predicted MC 
values from this model were compared with the mea-
sured MC values.

2.5 Sensitivity Analysis
The strength of the relationship between each in-

dependent variable and the dependent variable (∆MC) 
was determined by comparing their standardised re-
gression coefficients (Siegel 2016). For each meteoro-
logical dataset, standardised regression coefficients 
were obtained by subtracting the mean from each ob-
servation and then dividing by the standard deviation 
and regressing the resulting dataset. The larger 
the standardised regression coefficient, the larger its 
 impact on ∆MC.

2.6 Valid Range
The suggested valid range for each meteorological 

variable for predictive purposes was limited by the 5% 
and 95% quantiles (Table 2). The drying models can be 
used for piles of E. nitens logs with a mean diameter 
of approximately 265 mm. The model can be applied 
to log lengths >5 m as drying rates are little affected by 
changes in log length beyond 5 m (Defo and Brunette 
2007).

Table 2 Valid range for each model variable (5% and 95% quantiles)

Variable, daily values 5% 95%

Maximum temperature, °C 11.5 24.2

Minimum RH, % 42.9 83

Average temperature, °C 6 18.7

Average RH, % 69.6 100

Rainfall, mm 0 17.4

Solar radiation, MJ/m2 3.7 22.3
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3. Results

3.1 Description
Daily mean minimum and maximum temperature 

and RH, daily mean wind speed and predominant di-
rection and total rainfall for the study period are pro-
vided in Table 3.

Table 3 Daily mean temperature, RH and wind speed, predominant 
wind direction and total rainfall during study period

Variable Value

Minimum/maximum temperature, °C 8.7/16.5

Minimum/maximum RH, % 64.3/94.7

Windspeed, km/h 2.7

Wind direction NE and SW

Rainfall, mm 555

The study period commenced in late summer and 
ended in late winter, which was reflected in the down-
ward trend in daily mean temperature and upward 
trend in daily mean RH (Fig. 2).

In the first week of the study, the logs dried rap-
idly in response to relatively high air temperatures 
and low RH with a number of daily MC losses of >2% 
and a cumulative MC loss of >11% (Fig. 3). The rate of 
MC decline reduced considerably after approximately 
two months of drying when the log pile MC dropped 

below 32% in early April. By mid-May, the MC had 
dropped to ~30% (±1%), where it remained for the rest 
of the study period. The lowest MC was 29.2% on the 
3rd of August. Small increases in log pile MC (≤3%) 
occurred in response to rainfall events (Fig. 3).

3.2 Drying Models
The best fit drying model developed using the Low 

Head BOM weather station data, used the midnight-
to-midnight rainfall data (Eq. 1) (Table 4) (Fig. 4). The 
poorest fitting model used the 9 AM to 9 AM rainfall 
data on the day it was reported (R2

adj=45%). Moving 
the 9 AM to 9 AM rainfall data back one day improved 
the fit (R2

adj=53%).
The best fit drying model developed using the 

SILO meteorological data was developed using the 
9 AM to 9 AM rainfall data moved back one day (Eq. 2) 
(Table 4) (Fig. 4).

The best fit drying model developed from the por-
table weather station meteorological data (Eq. 3) (Table 
4) (Fig. 4) had the best fit to the measured MC values 
of all of the equations developed from the various me-
teorological datasets tested (69% R2

adj).
The best fit drying model developed from the tem-

perature and RH sensor meteorological data is shown 
in Eq. 4 (Table 4) (Fig. 4).

The fit of the Bown and Lasserre (2015) E. nitens log 
pile drying model was poor for all meteorological data 
sources tested. The best fit of the Bown and Lasserre 
(2015) drying model used the portable weather station 
data (Fig. 5). The MAE using this data source was 2.4%.Fig. 2 Daily mean temperature and RH values for the study period

Fig. 3 Log pile MC (%) and daily rainfall (mm) during the study period
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3.3 Predicted Values Within ±5% of Measured 
Values

Of the models developed in the study, none met 
the user criterion of having all predicted values with-
in ±5% of measured values. The best performing 
model was that developed from the temperature/RH 
sensor data, which had 96% of points within the 
±5% range. The second-best models were the portable 
weather station data model and the SILO data 
with rainfall moved back one day, each of which had 
93% of points within the ±5% range. The model de-

veloped by Bown and Lasserre (2015) had the lowest 
number of predicted values within ±5% of measured 
values (38%).

3.4 Sensitivity Analysis
The initial MC variable had the greatest impact on 

∆MC for all the drying models. The next greatest im-
pact was for the rainfall variables included in the BOM 
weather station, SILO data and portable weather sta-
tion drying models and the temperature variable for 
the temperature and RH sensor drying model.

Table 4 Regression models for each source of meteorological data. The best fit model is shown where multiple models were developed from 
a dataset

Data source Model R2
adj, %

Standard 
error

Mean absolute 
error, %

Equation

Low head 
weather station

DMC = 0.0238 – 0.092 ´ InitMC + 0.0005 ´ DayRn +0.00046 ´ MaxT – 
0.00036 ´ SolRd

65 0.0038 0.7 Eq.1

SILO DMC = 0.0274 – 0.106 ´ InitMC + 0.00042 ´ BkRn + 0.00038 ´ VP 57 0.0042 0.5 Eq. 2

Portable weather 
station

DMC = 0.0171 – 0.114 ´ InitMC + 0.0005 ´ MaxT + 0.00014 ´ MinRH + 
0.00035 ´ DayRn

69 0.0036 0.5 Eq. 3

Temperature and 
RH sensor

DMC = 0.0154 – 0.128 ´ InitMC + 0.00072 ´ AveT + 0.00018 ´ AveRH 39 0.005 0.7 Eq. 4

Where:
∆MC change in moisture content of the log pile, %/day
InitMC log pile moisture content at the start of the day, %
DayRn daily rainfall between midnight to midnight, mm
MaxT daily maximum air temperature, °C
MinRH daily minimum relative humidity, %RH

Fig. 5 Log pile MC (%) and MC predictions from Bown and Lasserre 
(2015) drying model during the study period

Fig. 4 Log pile MC (%) and MC predictions from each drying mod-
el during the study period

AveT daily average air temperature, °C
AveRH daily average relative humidity, %RH
SolRd daily solar radiation, MJ/m2
BkRn 9 am to 9 am rainfall moved back one day, mm
VP Vapour Pressure at 9 AM, hPa.
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4. Discussion
The study compared the goodness of fit (model fit 

to observations) and fitness for purpose (degree at 
which user requirements were met) of modelled MC 
values for natural drying of an E. nitens log pile using 
models developed from meteorological data from the 
nearest Bureau of Meteorology (BOM) weather sta-
tion, SILO interpolated weather data, a portable 
weather station adjacent to the log pile, and digital 
temperature/RH sensors in the pile.

The log pile drying pattern observed in the current 
study (high initial drying rate followed by an extend-
ed period of relatively stable MC) was similar to that 
observed for an E. globulus log pile in south-west 
 Australia (Strandgard and Mitchell 2017). The E. nitens 
log piles in the Bown and Lasserre (2015) trial had a 
similar high initial drying rate to that of the current 
study log pile; however, the summer component of 
their study was too short to observe any MC stabilisa-
tion. General drying patterns and total moisture loss 
(~20%) for log piles of a number of species in Austria 
(Erber et al. 2012, Erber et al. 2016, Erber et al. 2017) 
were also similar to those for the log pile in the current 
study. Erber et al. (2012) noted that drying forest bio-
mass to an MC of <35% may attract a premium sale 
price.

The general log pile drying pattern described 
above may reflect the nature of water within logs. 
Higher initial drying rates were likely to have resulted 
from rapid loss of unbound water from exposed sur-
faces, when conditions were conducive to drying 
(Defo and Brunette 2006). Slowing of drying rates 
would then have occurred as quantities of unbound 
water reduced and the distance increased between the 
remaining unbound water and the log surface. In the 
current study, the observed drying pattern explained 
why daily initial MC was a highly influential drying 
model variable as the reduction in the rate of MC 
change correlated with reducing values of daily initial 
MC. The other highly influential variable in three of 
the current study drying models, rainfall, caused mi-
nor (≤3%), short-term increases of the log pile MC, 
similar to those observed in other natural log drying 
studies (Erber et al. 2012, Erber et al. 2016).

Statistically, the best fit drying model was devel-
oped from the portable weather station meteorological 
data. The goodness of fit of the second-best drying 
model (BOM weather station data using midnight to 
midnight rainfall data) was only slightly poorer than 
that for the portable weather station data even though 
the BOM weather station was located over 15 km from 
the study site. From the perspective of potential users 

of the models, the best performing model was that 
developed from the temperature/RH sensor data as it 
had 96% of points within the user-defined acceptable 
range of within ±5% of the measured MC values.

The E. nitens log drying model developed by Bown 
and Lasserre (2015) had a poor fit to the measured MC 
data for all tested data sources. One reason for the 
poor fit was that the model form used was not able to 
model increases in MC, such as occurred in the current 
study in response to rainfall.

A limitation common to all forest biomass drying 
model development is that trials are conducted on 
relatively small log and logging residue piles due to 
the impracticality of monitoring MC changes for ex-
tended periods of commercial piles of logs or logging 
residue, which can be over three metres in height and 
hundreds of metres in length. Model developers make 
the assumption that the drying model developed from 
the smaller pile of logs or logging residue accurately 
represents the drying behaviour of a commercial log 
or logging residue pile. This assumption needs to be 
tested in further research trials. Further limitations are 
that the trial only studied a single log pile at one time 
of the year. Further trials are required to test the mod-
el applicability for different sites and seasons.

Where roadside drying of forest biomass is cur-
rently conducted in Australia, the typical approach is 
to store the material at roadside for one to two months 
with limited or no modelling of the biomass moisture 
content or supply chain cost/benefit trade-offs 
( Strandgard et al. 2021b). Strandgard et al. (2021b) 
found that optimising the forest biomass supply chain 
through the use of natural drying models reduced de-
livered forest biomass costs by 40% more than when 
biomass was stored at roadside for one to two months, 
due mainly to a substantial reduction in transport 
costs in the cost minimisation scenario.

Uses of the drying models developed in the current 
study include research purposes and operational man-
agement of E. nitens log piles stored at roadside. For 
research purposes, the model developed from the por-
table weather station data may be the most appropri-
ate as it had the best statistical fit and deployment of 
portable weather stations to collect data for the model 
would be feasible for a research trial. However, forest 
managers are unlikely to be able to justify the cost to 
purchase, deploy and maintain portable weather sta-
tions across a commercial forest estate (Erber et al. 
2017). Drying models developed from BOM meteoro-
logical data would be more appropriate in these cases 
as the data required by the model are readily available 
online. However, while the BOM meteorological data 
from the nearest weather station were well-correlated 
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with the log drying in the current study, changes in 
meteorological and site conditions across a forest es-
tate mean that this may not always be the case. For a 
diverse forest estate, the low cost and portability of the 
temperature/RH sensor tested in the study may be a 
more appropriate option. The temperature/RH sensor 
drying model had a lower R2

adj than the other models 
but had acceptable S and MAE values and the best fit 
from a user perspective.

The relatively low cost of the temperature/RH sen-
sors compared with a portable weather station sug-
gests a sensor network could be established through 
a forest estate wirelessly connected to a centralised 
server via the 3G mobile phone network or LoRaWAN 
to capture near real time meteorological data across a 
broad area. In addition to its use in drying models, 
detailed forest estate level meteorological data could 
be used as inputs in forest fire models (Dowdy et al. 
2009) to aid forest fire prediction and detection (Yu et 
al. 2005) and broad-scale tree growth models (Coops 
et al. 1998). Such a sensor network would form part of 
the Internet of Forest Things (IoFT) (Salam 2020), 
which is a critical component of the Forestry 4.0 con-
cept (Gingras and Charette 2017).

5. Conclusion
Cost reductions are critical for the success of forest 

biomass supply chains. Transport costs, which are a 
major cost element in forest biomass supply chains, 
and transport-related greenhouse gas emissions can 
be considerably reduced through natural drying of 
biomass at roadside prior to transport. Determination 
of the appropriate time to store individual forest bio-
mass piles requires predictive drying models to in-
form forest managers when sufficient drying has oc-
curred. In the case of E. nitens, a major southern 
hemisphere plantation species, only one log drying 
model (developed in Chile) has been published and 
its performance under Australian conditions had not 
been tested. In the current study, a number of natural 
log drying models were developed from a range of 
meteorological data sources and compared on the ba-
sis of their goodness of fit (model fit to observations) 
and fitness for purpose (degree at which user require-
ments were met). The meteorological data collected in 
the study were also used to predict the MC of the stud-
ied E. nitens log pile using the Chilean drying model 
to examine the model's accuracy for the studied log 
pile.

Statistically, the best fitting model was developed 
from portable weather station data collected from ad-
jacent to the log pile. The impracticality of establishing 

portable weather stations at each log pile over a large 
forest estate suggested this model would be best suit-
ed for further research studies rather than operational 
use. The drying model developed using meteorologi-
cal data from the nearest weather station had a slight-
ly poorer statistical fit than the portable weather sta-
tion model but used data that were readily available 
online, enabling its use for operational management 
of roadside log piles. The drying model developed 
from the temperature/RH sensors had a poorer (but 
still acceptable) fit statistically but the best fit from a 
user perspective. This result combined with the poten-
tial for a forest estate-wide network of low-cost tem-
perature/RH sensors feeding near real time data to a 
central server may make this a more attractive option 
for a forest manager, particularly if the data could sup-
port other forest activities, such as fire management 
and growth modelling.

The Chilean log drying model had poor accuracy 
predicting log pile MC using meteorological data col-
lected in the current study compared with the drying 
models developed in the current study. A deficiency 
of the model form used in the Chilean drying model 
is that it cannot model MC increases which leads to 
inaccurate MC predictions when logs rewet following 
rainfall.

Priority areas for further study include checking 
the predictive accuracy of the models developed in the 
study for E. nitens log piles under different meteoro-
logical and site conditions against those in the study 
and checking how accurately the developed drying 
models predict drying in commercial scale piles of E. 
nitens logs.
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