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1. Introduction
The existence of qualitatively and quantitatively 

optimal forest transportation systems, which can be 
divided into primary and secondary network, is one 
of the basic requirements in today’s modern, integrat-
ed, technologically advanced, rational, cost-effective, 
environmentally sound, socially responsible, biodiver-
sity respectful and income sustainable management of 
forest ecosystems (Potočnik et al. 2015).

Similar to public roads, forest roads are deterio-
rated because of excessive load, transportation on 
negative weather condition, inconvenient drainage 
construction, planning the forest roads on low bearing 
capacity soils, using of unsuitable techniques for forest 
road construction (Eroglu et al. 2003). While it is im-
portant to do the right repair at the right place at the 

right time, it is cheaper to maintain roads in good 
shape than to fix broken roads. An excellent pavement 
maintenance program is usually part of an overall 
management plan. It can also be used as the starting 
point to develop such a plan (Ouma et al. 2015). One 
of the most important keys to successful pavement 
maintenance is to know what the proper repair is. This 
can range from doing nothing to reconstruct the entire 
road. It may be better to do nothing rather than to 
make a repair that fails prematurely (Santos and Ferreira 
2013). Therefore, there must be a detailed plan for for-
est roads to keep their efficiency and reduce environ-
mental damage and costs.

Pavement management is a program for improv-
ing the quality and performance of pavements and 
minimizing costs through good management practice 
(Bent et al. 2012, Roberts and Attoh-Okine 1998). For-

 
Pavement Deterioration Modeling for Forest 

Roads Based on Logistic Regression  
and Artificial Neural Networks

Mohammad Javad Heidari, Akbar Najafi, Seyedjalil Alavi

Abstract

The accurate prediction of forest road pavement performance is important for efficient manage-
ment of surface transportation infrastructure and achieves significant savings through time-
ly intervention and accurate planning. The aim of this paper was to introduce a methodology 
for developing accurate pavement deterioration models to be used primarily for the manage-
ment of the forest road infrastructure. For this purpose, 19 explanatory and three correspond-
ing response variables were measured in 185 segments of 50 km forest roads. Logistic regres-
sion (LR) and artificial neural networks (ANNs) were used to predict forest road pavement 
deterioration, Pothole, rutting and protrusion, as a function of pavement condition, environ-
mental factors, traffic and road qualify. The results showed ANNs and LR models could clas-
sify from 82% to 89% of the current pavement condition correctly. According to the results, 
LR model and ANNs predicted rutting, pothole and protrusion with 83.5%, 83.00% and 
81.75%, 88.65% and 85.20%, 80.00% accuracy. Equivalent single axle load (ESAL), date of 
repair, thickness of pavement and slope were identified as most significant explanatory vari-
ables. Receiver Operating Characteristic Curve (ROC) showed that the results obtained by 
ANNs and logistic regression are close to each other.

Keywords: forest road maintenance, pavement management system, pavement strength, pot-
hole, protrusion, rutting



M.J. Heidari et al.	 Pavement Deterioration Modeling for Forest Roads Based on Logistic Regression ... (271–287)

272	 Croat. j. for. eng. 39(2018)2

est Roads Pavement Management System (FRPMS) is 
a set of defined procedures for collecting, analyzing, 
maintaining, and reporting forest road pavement data, 
to assist the decision makers in finding optimum strat-
egies for maintaining forest road pavements in ser-
viceable condition over a given period of time for the 
least cost (Rusu et al. 2015, Sen 2013). It is, moreover, 
designed to provide objective information and useful 
data for analysis so that road managers can make 
more consistent, cost-effective, and defensible deci-
sions related to the preservation of a pavement net-
work (Santos and Ferreira 2013, Yang 2004). The first 
step for a successful introduction of asset management 
systems is to develop a reliable deterioration model 
considering the heterogeneous deterioration process 
of their road network. Although most forest road 
pavement experts or researchers already understand 
the importance of this, the task is never easy due to 
insufficient data for statistical methods that usually 
demand a large amount of inspection data to draw 
characteristics of the deterioration process of their 
road network (Han et al. 2014).

The impact of various factors on pavement perfor-
mance is complex. To understand the mechanism and 
predict the future state of pavement, it is essential to 
study the factors affecting pavement deterioration 
(Moreno-Navarro et al. 2015, Schlotjes 2013). Factors 
affecting pavement condition can be various factors 
such as the age of the pavement, traffic, environment, 
materials, thickness of pavement, pavement strength 
and properties of the substrate that affect the mechan-
ical properties of the pavement (Salour and Erlingsson 
2013). The effectiveness of maintenance planning de-
pends on the accuracy of the predicted future perfor-
mance and observed current condition of the pave-
ment. If the deterioration models used in determining 
the maintenance policies cannot sufficiently represent 
the actual deterioration process, the planned mainte-
nance strategies might be far from optimal. Therefore, 
performance measurement and deterioration models 
are essential components of the maintenance planning 
(Lin et al. 2014). Pavement deterioration models actu-
ally predict the future of pavement and it is useful for 
developing models of pavement maintenance man-
agement or maintenance priority index (MPI) (Saha et 
al. 2014). Pavement condition performance models, 
which simulate the deterioration process of pavement 
condition, play a pivotal role in FRPMS (Owolabi and 
Oladapo 2011). The ranking criteria used to prioritize 
pavement maintenance program are based on the se-
verity of the stress and conditioned by it. The condi-
tions governing the forest roads is different from the 
main roads maintenance management, and it is more 

complex (Sundin and Braban-Ledoux 2001). On the 
other hand, there is no special equipment to check the 
condition of roads or it is very expensive. For this rea-
son it is recommended to use the techniques of linear 
and nonlinear models, as they are cheaper and faster 
(Hahne et al. 2014). Myriads of researches have been 
done with respect to pavement performance modeling 
in forest and public roads (Faghih-Imani and Amador 
Jimenez 2013, Forsyth et al. 2006, Tabatabaee et al. 
2013, Tunay 2006). Regression technique is used by 
researchers as a traditional method to predict pave-
ment deterioration rate (Kaur and Pulugurta 2008). 
Logistic regression is used when the target variable is 
binary or binomial and the independent variables are 
numerical and (or) categorical (Xu et al. 2014). Most 
specialists agree that no single prediction model is ap-
plicable to all pavements. This is due to the high vari-
ability in the manner in which each agency measures 
its pavement. For example, they may vary in the num-
ber, scale, type of pavement characteristics, and in the 
pavement deterioration indicators used (Roberts and 
Attoh-Okine 1998). In recent years, predicting the ex-
pected pavement deterioration has been the focus of 
many works (Attoh-Okine 1994) using traffic and 
time-related models, interactive time, traffic, or dis-
tress models. To date, approaches used in forecasting 
the pavement condition have included: regression 
models, artificial neural network, empirical model, 
mechanistic models and deterministic and probabilis-
tic models in public roads. Within these approaches, 
logistic regression analysis and ANN are used by re-
searchers as a new method to predict pavement dete-
rioration rate in forest roads. Logistic regression is a 
data mining method that can be used to classify a 
given dataset. Logistic regression builds a linear mod-
el based on a transformed variable (Friedman et al. 
2000) often referred to as logit variable (Hosmer Jr. et 
al. 2013), which is used to assess the relation between 
one dependent variable (binary, categorical or ordinal) 
and several predictor variables (continuous or categor-
ical). Among the various methods of regression, ac-
cording to the nature of data, logistic regression is a 
good method for pavement modeling and prediction 
for forest roads (Hosmer et al. 2013).

However, the pavement deterioration process is so 
complex that it is difficult and sometimes impossible 
to find an appropriate functional form, as used by tra-
ditional modeling (Lee et al. 2013). Hence a new ap-
proach, which can be categorized as »biologically-in-
spired«, is taking the territory from its traditional 
counterpart. A typical model in this category is Artificial 
Neural Networks (ANNs) (Yang et al. 2003). Neural 
network abstracts the underlying relationship be-
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tween dependent and independent variables from the 
exemplar data pairs and expresses it as forms of 
weight matrix (Russell C. Eberhart 1990, Yang 2004, 
Yang et al. 2003). Among the list of useful features of 
ANNs, many are favorable for FRPD prediction. The 
primary feature is that ANNs can represent any arbi-
trary nonlinear function, while in regression analysis 
relationships, or at best pre-specified nonlinearity, are 
needed (Xu et al. 2014). In ANN, the neural net discov-
ers its own function with no limit associated with lin-
earity. The other useful features are its ability to gen-
eralize a relationship from only a small subset of data, 
to remain generally vigorous in the presence of noisy 
inputs or missing input parameters, and to adapt and 
continue to learn even with evolving situations (Thube 
2012). The main objective of this study was to intro-
duce and develop a pavement performance model to 
predict Forest Road Pavement Deterioration (FRPD) 
and prioritize forest roads deterioration by applying 
artificial neural network and logistic regression mod-
el. The models can help forest engineers to define al-
ternative ways of road maintenance, highly cost-effec-
tive and environmentally friendly in future. Moreover, 
the subgoal was to identify and quantify the new ex-
planatory variables on FRPD. To date many models 
have been developed for forecasting of pavement con-
ditions, most of them focusing on single index and all 
models relating to forest and public roads (Yang et al. 
2003). Pavement deterioration models were developed 
in the present study to predict the forest roads dete-
rioration based on current pavement conditions such 
as traffic loads, environmental, design, construction, 
and maintenance practices.

2. Methods

2.1 Data collection
The foundation of a successful FRPMS plan is the 

collection of data according to methods, standards, 
and protocols to be used in collecting pavement condi-
tion data. FRPMS rely on data from a variety of sourc-
es (e.g., roadway inventory, traffic data, materials, and 
construction history). This data maybe available or 
must be obtained by road inventory and managed so 
that it can be readily accessed by decision makers at 
all levels (McQueen and Timm 2005).

2.2 Road inventory
Necessary details of all the roads have been taken 

with the road inventory method. A road inventory 
(manual survey) was completed on 50 km including 
primary and secondary roads during Oct–Nov 2014. 

The roads were divided into a total of 185 road seg-
ments; road segments as defined by the road length 
between road drainage structures, intersections with 
other roads or trails, or changes in road condition 
(Coulter et al. 2006) and recorded by GPS. Within each 
segment, location of the initial sampling line was de-
termined on the road by generating random value of 
0–20 m and at 20 m interval away from the last line 
perpendicular to the wheel track (Fig. 1). Manual sur-
veys were conducted by walking and noting the exist-
ing surface distress.

In a given segment, there were two main types of 
road inventory data, »Section« or »Continuous« data 
and »Event« or »Discrete« data to be collected, each of 
which needs a different and individual data collection 
treatment. Continues data such as grooves, pits and 
protrusions, checked rut and pothole were measured 
in linear or square meter. In contrast, event data such 
as road prism were described by a single change and 
an off-set from the center-line (Hill 2011).

A visual inspection is the first level of assessment 
and can be as simple as a walk-through the area. Rut-
ting, protrusion and pothole were measured on cross-
section as shown in Fig. 1. A stick marked in cm was 
used to measure the vertical distance between the road 
surface across the ruts, protrusion and pothole, and an 
aluminum bar mounted on a 1 m long rebar was driv-
en into the ground on either side of the variables. The 
stick was aligned parallel to marks on the bar to ensure 

Fig. 1 Forest Roads Inventory for selected segments by generating 
random value of 0–20 m and at 20 m interval away from the last 
line
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the vertical measurements were made in the same ori-
entation with the stick. These vertical distances were 
measured at 2.5 cm horizontally across each rut and 
pothole unless more closely spaced vertical measure-
ments were necessary to adequately define the shape 
of the road surface (Gatto 2001).

Within each segment, forest roads pavement condi-
tion was assessed based on pavement current condition 
(thickness of the component layers, materials, grooves, 
pits and protrusions checked), management history 
(traffics, maximum load, age of pavement), road prism 
(road slope, longitudinal and lateral drainage (and road 
location properties (distance to stream, ground slope, 
canopy density). The survey data were generally re-
corded on paper and then entered into the computer 
every day to create the pavement management system 
(PMS) database. Survey data was used in this study for 
both modeling and implementation purposes.

2.2.1 Study area
The Chob o kaghaz Mazandaran maintains approx-

imately 400 km of primarily gravel surfaced low vol-
ume roads located in three separate forested tracts in 
Mazandaran province north of Iran, between 36°20’30’’ 
N and 36°23’58’’ N latitude and 45°17’30’’ and 52°18’35’’ 
E longitude. The area is part of the Caspian forest in 
northern Iran, with rough topography and dense veg-
etation cover (Jaafari et al. 2015). Elevations within the 
study area range from 150 to 800 meters above sea 
level. Mean annual precipitation for this area averages 
867 millimeters, the primary and secondary roads were 
mostly under 30–40 years in age, and most have been 
reconstructed using current management practices in 
recent years; moreover, maintenance operations are 
done every six months. Average annual precipitation is 
about 872 mm and an average annual temperature 
ranges between 7 and 15 °C. The climate is humid and 
cold, according to Emberger climagram. The soil in this 
region includes soil type of brown forest and brown 
washed with argillic and calcic horizon.

Average monthly traffic was 425. The recently-
graded roads had more traffic because grading was 
generally a prerequisite to timber hauling. Most of the 
study sites were on the dry and wet season and aver-
age of timber hauling was 1200 m3 with three and two 
axle trucks.

2.2.2 Response variables
Pavement management typically operates at two 

levels, (1) network level and (2) project level. At the 
network level, priority program and work schedule 
are developed within overall budget constraints. On 
the other hand, at the project level, specific physical 
improvements are implemented according to network 

decisions (Shahnazari et al. 2012). Information col-
lected as part of a network-level data collection effort 
may involve many items, but a standard set of data 
typically collected as response variables, including 
rutting, pothole and protrusion, were identified as re-
sponse variables through the literature, while stan-
dards were extracted from the PMS database.

When forest harvesting equipment and other ve-
hicles move across a forest road, rutting can occur. 
Ruts are the trenches or furrows created by machine 
tires or tracks. Rutting displaces forest roads and dam-
ages it. Rutting is a normal occurrence for gravel roads. 
Ruts are indicators of maintenance need. If ruts exceed 
5 cm in depth or direct water down the road, or surface 
roughness affects the ability to travel on the road, it is 
time to perform surface maintenance.

Potholes are impressions in the forest roads caused 
by heavy traffic and often occur at lower slope level. 
They are at least 3 cm wide and 3–5 cm long. Two dif-
ferent depth criteria (3 cm, 8 cm and 12 cm) apply, 
depending on the hazard of the standards being as-
sessed. On sites with a high or very high deterioration 
hazard, or where the deterioration hazard has not 
been assessed, both depth criteria apply. On sites with 
a moderate or low deterioration hazard, only the 
greater than 12 cm depth criterion applies. This cate-
gory does not require the survey point to be assessed 
for evidence of deterioration.

The category repeated machine traffic describes pro-
trusion resulting from repeated heavy machine traffic. 
Such protrusion is typically found on roads and espe-
cially on repeatedly used skid trails, which are obvious 
linear features. However, it occurs on heavy traffic ar-
eas associated with roadside work areas and in middle 
slope or upper slope level. This disturbance also occurs 
on moderate or low compaction pavement logged un-
der dry conditions, where random skidding operations 
have a limited use of trails – one or two passes.

2.2.3 Explanatory variables
Every variable that may affect pavement perfor-

mance should be considered initially in road inven-
tory. This list will typically be large. For their imple-
mentation within a FRPMS, however, predictive 
models must only use the variables that can be direct-
ly measured within acceptable cost and time con-
straints, retrieved from historical records, or computed 
or estimated (Zhang et al. 2013).

Previous studies prepared a summary of signifi-
cant effective variables in FRPMS or highway or rural 
road (Dong 2011). Table 1 presents the list of variables 
for the current study.
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The identified variables could be categorized un-
der major topics that are known to affect perfor-
mance. A preliminary list of important explanatory 
variables is prepared under four major categories, 
which affect long-term pavement behavior. These 
categories include pavement condition; environmen-
tal factors, traffic and road qualify as listed in Table 
1. This list will be the primary source for explanatory 
variables.

3. Data Analysis
LR and ANNs models were developed to model 

the overall pavement conditions, encompassing the 
individual pothole, protrusion and rut ratings. The 
SPSS version 16 was used for data analysis with logis-
tic regression, and the default ANNs training algo-
rithm of NeuroSolution Infinity software version 
1.1.0.1 was used for neural network purpose.

Table 1 Important data elements in FRPMS deterioration

Main category Input variable Quality of variable
Value Classes

Min. Max.

Pavement condition

Thickness of pavement, cm Ordinal 80.28 205.8 1,2

Pavement material Nominal Mixed, river and mountain 1,2,3

Age of pavement, year Ordinal 30 44 1,2,3,4

Maintenance historic, year Nominal 0.60 1.20 1,2,3,4

Environmental factors

Precipitation, mm Ordinal 433 1910 1,2,3,4,5,6

Canopy, % Scale 0 85 1,2,3,4

Elevation, m Ordinal 143 838 1,2,3,4

Slope, % Ordinal 1 23 1,2,3,4

Aspect Nominal 0 4 N,S,E,W

Traffic* (ADT and MADT)

ESAL, kN ** Scale 3 24 No

Number of skids *** Frequency 0 11 No

Volume of timber, m3 Scale 1067 2780 No

Road qualify

Loss of road Presence or absence 0 1 Yes or No

Sand in road **** Presence or absence 0 1 Yes or No

Drainage Presence or absence 0 1 Yes or No

Type of Road Nominal 1 3 1,2,3

Intersection Presence or absence 0 1 Yes or No

Status of ditch Scale 0 8.79 No

Turn Frequency 0 4 No

* (ADT/MADT): ADT: Average daily traffic, MADT: Maximum ADT ocurred in this network (Gralund and Puckett 1996)
** Equivalent standard axle loads calculated in accordance with ESAL calculator program (Martin et al. 2000)
*** Total number of skids, timber trucks and truck brakes recorded by GPS
**** Amount of sand on road surface, as a result poor compaction

Table 2 Subclasses of response variable (Reid and Dunne 1984, Smith 1993, Yee and Roelofs 1980)

Variable Class 1 Class 2 Class 3 Class 4

Pothole Depth < 3 cm Depth = 3–8 cm Depth 8–12 and < 12 cm and Area > 1 m2 Depth >12 cm

Rutting Depth < 5 cm Depth = 5–10 cm Depth = 10–15 cm Depth > 15 cm

Protrusion Height < 3 cm Height = 3–5 cm Height = 5–8 cm
Height > 8 cm or Area > 2 m * 3 m (6 m2) 

in each class
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3.1 Response Variable Classification
Initially, response variables including pothole, rut-

ting and protrusion were divided into four sub-classes 
(Table. 2).

3.2 Logistic Regression Model
In this study, since the classification within the de-

pendent variable has no meaning, ordinal logistic is 
used for each class. Logistic regression builds a linear 
model based on a transformed variable using a link 
function referred to as the Logit function or model, 
which is the log of the odds that an event occurs. The 
maximum likelihood estimation procedure is used to 
obtain the estimates of the regression coefficients by 
maximizing the value of log-likelihood function through 
an iterative process, with the aim of making the likeli-
hood of observed data greater (Hosmer et al. 2013). The 
number of logistic regression equations required is usu-
ally lower by one category because one of the prediction 
categories is chosen as a reference category.

3.3 ANN Model
An ANN is a massively parallel distributed informa-

tion processing system that has certain performance 
characteristics resembling biological neural networks 
of the human brain (Suman and Sinha 2012). ANNs 
have been developed as a generalization of mathemat-
ical models of human cognition or neural biology 
(Izenman 2008, Movagharnejad and Nikzad 2007, Rao 
2000). A neural network is characterized by its architec-
ture that represents the pattern of connection between 
nodes, its method of determining the connection 
weights and the activation function (Russell C. Eberhart 
1990, Si et al. 2015). The basic structure of a network 
usually consists of three layers: the input layer, where 
the data are introduced to the network; the hidden 
layer or layers, where data are processed; and the out-
put layer, where the results for given inputs are pro-
duced (Kumar et al. 2013, Suman and Sinha 2012).

3.3.1 Model Architecture
According to the database partitioning, the valida-

tion dataset has been considered statistically indepen-
dent from the datasets used for training and testing 
purposes. Hence, the verification of ANN models 
through using the validation dataset can be considered 
a touchstone in examining the performance of the de-
veloped ANN models from an implementation point 
of view (Thube 2012). The selection of ANN architec-
ture is not a decision making process. Most of the time, 
trial and error, combined with engineering judgment, 
is used to determine the appropriate architecture for 
a particular problem (Thube 2012). In the present 

study, a number of explanatory and response vari-
ables are kept constant, and variations are made in the 
hidden layers and in the neurons per hidden layers 
with the software default. First, the depth of the ex-
periment search must be determined. The defaults are 
designed to choose the most commonly used prepro-
cessing functions and neural network topologies, but 
if the computing resources are limited, the options can 
be changed to either limited, partial or none for a less 
thorough search (Abu Jamous 2013).

3.3.2 Data Optimization
It is necessary to determine how the data should 

be allocated for optimization. The database was di-
vided into three datasets, and the first set has been 
used for training purposes. One set contains 70% (125 
segments) of the data that are used for network train-
ing, and the remaining set contains 15% (30 segment) 
of the data used for network testing and 15% (30 segment) 
for validation.

3.4 The ROC Curve
Receiver Operating Characteristic (ROC) is used 

for evaluating two models. A ROC is a standard tech-
nique for summarizing classifier performance over a 
range of trade-offs between true positive (TP) and false 
positive (FP) error rates (Phillips et al. 2015). ROC 
curve is a plot of sensitivity (the ability of the model 
to predict an event correctly) versus 1-specificity for 
the possible cut-off classification probability values P0 
(Humphrey et al. 2012). For logistic regression, it is 
necessary to create a 2×2 classification table of pre-
dicted values from model for response if y^=0 or 1 
versus the true value of y=0 or 1 (Sharma et al. 2011). 
A rough guide for classifying the accuracy of a diag-
nostic test is the traditional academic point system: 
0.90–1 = excellent (A), 0.80–0.90 = good (B), 0.70–0.80 = 
fair (C), 0.60–0.70 = poor (D) and 0.50–0.60 = fail (F) 
(Hosmer Jr. et al. 2013).

While the ROC curve contains most of the informa-
tion about the accuracy of a continuous predictor, it is 
sometimes desirable to produce quantitative sum-
mary measures of the ROC curve (Anifah et al. 2013). 
The most commonly used such measure is by far the 
area under the ROC curves (AUC) (Friedman et al. 
2000). In an empirical ROC curve, this is usually esti-
mated by the trapezoidal rule, which forms trapezoids 
using the observed points as corners, computing the 
areas of these trapezoids and then adding them up 
(Gonen 2006). This may be quite an effort for a curve 
with many possible thresholds. Fortunately, AUC is 
connected to a couple of well-known statistical mea-
sures that facilitates comparison and improves inter-
pretation (Hosmer Jr. et al. 2013).
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4. Result
To simulate FRPD and evaluate Forest road pave-

ment performance three response variables and 19 
explanatory variables were defined based on literature 
review and field survey.

4.1 LR Models

4.1.1 Pothole Model
LR was applied to model pothole at four subclass-

es (Table 2). The result of pothole analysis and ROC 
evaluating model are presented in Table 3.

Table 3 Model summary of input explanatory response variable at four levels of pothole

Variable Sig. Wald Test Standard deviation Df Coefficient

Iteration 1 0.300 4.7 1.234 1 –2.76

Iteration 2 0.233 1.4 1.231 1 –1.47

Iteration 3 0.599 0.2 1.224 1 0.643

Slope 0.206** 4.9 0.011 1 0.002

Date of repair 0.015*** 24.5 1.08 1 –3.002

Turn 0.251** 1.5 0.086 1 –0.009

Percent of canopy 0.000*** 14.74 0.007 1 –0.332

Thickness of pavement 0.222** 1.4 0.006 1 1.320

ESAL 0.000*** 75.6 1.616 1 2.279

Drainage 0.599** 0.3 0.082 1 0.480

Material 0.025*** 8.5 0.412 1 1.823

AUC 1,2,3,4 0.806 0.769 0.736 0.804 –

*** Strong relation ** Medium relation

Table 4 Model summary of input explanatory response variable for rutting

Variable Sig. Wald Test Standard deviation Df Coefficient

Iteration 1 0.492 0.47 1.124 1 0.772

Iteration 2 0.022 5.218 1.135 1 0.594

Iteration 3 0.000 12.45 1.126 1 4.078

Slope 0.06 *** 0.658 0.011 1 0.921

Date of repair 0.382 ** 1.237 1.37 1 1.465

Turn 0.000 *** 72.241 0.111 1 –0.004

Percent of canopy 0.534 ** 0.386 0.007 1 0.004

Thickness of pavement 0.049 *** 0.976 0.006 1 1.001

ESAL 0.081 *** 3.043 -1.880 1 –3.281

Drainage 0.266 ** 0.1 0.078 1 0.012

Material 0.982 ** 0.915 0.429 1 0.01

AUC 1,2,3,4 0.946 0.827 0.748 0.965 –

*** Strong relation ** Medium relation
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According to Wald test for all classes of pothole 
levels, the most important variables were date of re-
pair, ESAL, percent of canopy and material.

According to the results, the maximum and mini-
mum AUC were found in class 1 and class 3, 0.806 and 
0.736, respectively (Table 3). Table 3 shows four AUC 
representing excellent, good, and fair.

4.1.2 Rutting Model
The results of rutting analysis and evaluating 

(AUC) model are presented in Table 4.
Wald test for rutting showed that the most impor-

tant variable for this responsible variable were turn, 

thickness of pavement, ESAL and slope. Similar to the 
results obtained for pothole, the results showed that 
the maximum AUC was found in class 4 and mini-
mum in class 3 (Table 4).

4.1.3 Protrusion Model
Protrusion LR analysis and evaluating (AUC) are 

presented in Table 5.
According to Wald test ESAL, date of repair, mate-

rial, number of turn and slope are the effective factors 
in protrusion formation. In protrusion, maximum 
AUC was found in class 4 (Table 5) and minimum in 
class 3. The best tested plot in protrusion showed that 
all classes were excellent excluding class 3 (Table 5).

Table 5 Model summary of input explanatory response variable for protrusion

Variable Sig. Wald Test Standard deviation Df Coefficient

Iteration 1 0.000 16.526 1.295 1 –5.265

Iteration 2 0.004 8.281 1.281 1 –3.688

Iteration 3 0.371 0.8 1.249 1 –1.118

Slope 0.02 *** 4.132 0.013 1 0.525

Date of repair 0.05 *** 3.855 1.567 1 3.076

Turn 0.03 *** 4.196 0.091 1 0.047

Percent of canopy 0.375 ** 0.856 0.008 1 –0.007

Thickness of pavement 0.328 ** 0.957 0.006 1 –0.006

ESAL 0.000 *** 10.406 -2.280 1 5.258

Drainage 0.909 ** 0013 0.083 1 0.009

Material 0.083 ** 2.282 0.439 1 –0.064

AUC 1,2,3,4 0.921 0.923 0.806 0.935 –

*** Strong relation ** Medium relation

Table 6 Model overview for Pothole

Variable Model Experiment Project Input Percent of Issue

Pothole

Dataset Optim. Leave-N-Out Date of Repair 20.6

Score 98.82 65.75 Canopy 19.6

Percent correct 100 85.23 Material 18.3

Avg. area ROC 1 0.880 ESAL 15.2

Avg. correlation 0.91 0.78 Slope 15.1

Avg. norm. MSE 0.0892 0.0377 Drainage 9.5

Avg. norm. MAE 0.099 0.234 Precipitation 1.7

Max. abs. error 0.044 1 – –

Training epochs 3 – – –
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4.2 ANN Modeling

4.2.1 Pothole Model
Based on the prediction of pothole, a satisfactory 

prediction model has been developed. Given the vari-
ous ANNs model overview for pothole (Table 6), the 
weights of links among the neurons are determined 
through the training process. The training process has 
been carried out for a fixed number of epochs (10,000) 
(Semeida 2015).

The model comparisons for different ANN models 
are carried out by comparing the normal mean square 
error (NMSE) values during testing stage. The details 
of NMSE and average correlation variations for differ-
ent ANN models are shown in Table 6.

The results indicated that the final model has a very 
good NMSE, NMAE and AUC (Table 6). Based on 
Table 6, the higher values of Percent of Issue indicate 
that the variable is relatively more important. The five 
most influential variables on the failure of the pave-
ment and pothole were the date of repair (20.6), mate-
rial (18.3), ESAL (15.2), Slope (15.1) and drainage (9.5). 
Finally, the ANN models correspond to the ROC curve 
and average correlation at the testing stage was se-
lected. Another critical step, prior to the actual applica-
tion of the developed model, is to evaluate the perfor-
mance of the model. The details of the evaluation for 
pothole ANN models are shown in Fig. 2 and 3 as an 
example, while those for other models were removed 
to reduce the volume of figures.

The correlation of pothole model showed that max-
imum correlation was achieved in thirty minutes after 
running the model, after which there was no perfor-
mance. However, the disturbances of explanatory 
variable got better and Maximum performance came 
to 0.9. AUC was used to compare the evaluation of this 
model with pothole model generated by LR (Fig 3).

The AUC shows very good disturbance of explan-
atory variable a few minute after running the model. 
The AUC in this pothole ANN model was at first 0.6 
and after thirty minutes it reached the maximum per-
formance (0.88).

4.2.2 Rutting Model
Similar to LR modeling, to develop the rutting 

model, rutting data was classified into four classes. 
Total rutting results showed that the most important 
variables were: the thickness of pavement, Elevation, 
turn and ESAL over timeline (Table 7).

As can be seen from Table 7, the percentage of 
Thickness (30.3) has a strong impact on the rutting 
followed by Elevation (22) and ESAL (13.6).

4.2.3 Protrusion Model
To develop the protrusion model, the data was 

classified similar to those in LR modeling. To analyze 
the influence of explanatory factors on FRPD, the rela-
tively effective and ineffective maintenance were dis-
tinguished. Pavement that received relatively effective 
treatment can be determined using protrusion condi-
tion. These types of response (Correlation and ROC) 
are illustrated in Table 8.

Fig. 2 Correlation between explanatory variable in Pothole ANN 
model

Fig. 3 Pothole ROC Curve in ANN model
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As can be seen from Table 8, the percentage of ESAL 
(36.1), slope (35.7) and material (12.9) were considered 
the most significant variables influencing the protru-
sion. It is important to note that more explanatory vari-
ables mentioned in Table 8, such as channel and canopy, 
is included in the functional form of models. Finally, the 
protrusion models corresponding to the correlation and 
ROC curve at the testing stage were selected.

The effect of important explanatory variable on re-
sponse variable is shown in Fig 4. These figures show 
the effect of management operations in output model 
and FRPMS.

4.3 Comparison of models 
The models developed by LR and ANNs were then 

applied to the data set and their performances were 
compared by AUC, and Percent of Correct Prediction 

(PCP) and Root Mean Square Error (RMSE) (Table 10). 
The LR and ANNS were able to classify precisely 89% 
and 82% of the pavement segments, respectively. 

Table 7 Rutting model overview 

Rutting

Model Experiment Project Input Percent of Issue

Dataset Optim. Leave-N-Out Thickness of pavement 30.3

Score 99.985 68.56 Elevation 22

Percent Correct 100 83 Turn 15

Avg. Area ROC 1 0.854 ESAL 13.6

Avg. Correlation 1 0.74 Material 9.6

Avg. Norm. MSE 0 0.043 Slope 3.4

Avg. Norm. MAE 0 0.0198 Date of Repair 5.8

Max. Abs. Error 0 1 Drainage 2.8

Training Epochs 3 – Precipitation 1.5

Table 8 Protrusion model overview 

Protrusion

Model Experiment Project Input Percent of Issue

Dataset Optim. Leave-N-Out ESAL 36.1

Score 99.275 75.376 Slope 35.7

Percent Correct 100 98.65 Material 12.9

Avg. Area ROC 1 0.921 Drainage 7.5

Avg. Correlation 0.99 0.83 Turn 6

Avg. Norm. MSE 0.0592 0.0283 Canopy 1.7

Avg. Norm. MAE 0.065 0.140 – –

Max. Abs. Error 0.103 0.92 – –

Training Epochs 3 – – –

Table 9 Comparison of LR and ANNs models in assessing pave-
ment deterioration condition

Pavement 
deterioration

Model description AUC PCP RMSE

Pothole
ANN model

LR model

0.880

0.832

85.2%

81.2%

0.194

0.253

Rutting
ANN model

LR model

0.854

0.910

83%

83.5%

0.207

0.265

Protrusion
ANN model

LR model

0.921

0.817

88.6%

81.7%

0.168

0.244
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Predictions of rutting, pothole and protrusion are 
carried out by using the trained ANN models of se-
lected architectures, as well as by using the LR model. 
The maximum protrusion accuracy (88.6%) was 
achieved with ANN model. Pothole and rutting 
achieved the maximum accuracy with ANN and LR 
model.

5. Discussions and Conclusions
Forest Road Pavement Management is a topic of 

great significance in forest engineering. It is essential 
to develop reliable pavement management systems, 
which have the ability to estimate the overall pave-
ment condition and the ability to forecast when and 

Fig. 4 Effect of important explanatory variable on response variable in FRP
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what kind of repair will be needed on certain pave-
ments. The models of the pavement performance pre-
diction are developed using the past pavement perfor-
mance data. Thus Pavement Performance Prediction 
models are integrated into the decision making pro-
cess and help to schedule the repairs and estimate the 
budgets (Kaur and Pulugurta 2008).

ESAL had the most significant effect on FRPD (pot-
hole, ruts and protrusion) in both models. By defini-
tion, it removes the effect of pavement design, age, and 
condition variables. For example, one ESAL on a 
strong pavement corresponds to a much lower pro-
portion of its fatigue life than one ESAL on a weak 
pavement (Sun et al. 2007). For this reason, its effect is 
significant in our forest roads because the average age 
of the road is 35. In the study area, the transporting 
machines with maximum capacity of logs are used to 
reduce the logging and timber transportation costs. 
Max ESAL found in forest roads was more than 20 kN 
and in this segment max deterioration was observed. 
ADT and MADT sized pieces resulting from the 
weight of the truck and friction between the tire and 
the aggregate (Miller 2014). These smaller, fine parti-
cles are then more easily mobilized. During wet 
weather hauling, the weight of the truck on the road 
layer may also cause fine sediment from the subgrade 
to move upward indicate the traffic impact on pave-
ment performance; it merges with ESAL or at least 
includes the percentage of truck information in our 
model. It is a well-known fact that roads with high 
levels of traffic, especially truck traffic, need to be re-
paired more often than roads with lower levels of traf-
fic. Higher traffic levels increase the ESAL as well as 
the volume of fine material, and this is a major reason 
why traffic increases pavement deterioration (Smith 
1993). Log truck traffic increases pavement deteriora-
tion by increasing the availability of fine sediment on 
the road surface (Fassman and Blackbourn 2011). Deg-
radation of the surface aggregate into smaller sized 
pieces is the result of the truck weight and friction 
between the tire and the aggregate (Miller 2014). These 
smaller, fine particles are then more easily mobilized. 
During hauling in wet weather, the weight of the truck 
on the road layer may also cause fine sediment from 
the subgrade to move upward to the surface in a pro-
cess known as pumping (Schaefer et al. 2008).  Larger 
logs on trucks can cause breaking of the pavement’s 
upper layer providing conditions for the water to get 
into roadbed and cause deterioration and rutting of 
pavements (Wang 2011). Heavy vehicles will do far 
more damage to pavements than lighter vehicles. In 
the current research, ESAL in LR and ANNs model 
had a most significant role in FRPD and this is in line 

with the research of (Adlinge and Gupta 2013, Fassman 
and Blackbourn 2011, Miller 2014, Peshkin 2011, 
Schaefer et al. 2008, Smith 1993, Wang and Al-Qadi 
2009).

The most common maintenance activity that influ-
ences pavement deterioration is the date of the last 
repair of pavements (Zhang et al. 2010). The results of 
this research showed that the increased maintenance 
activity resulted in lower pavement deterioration. 
These results indicate that roads that are not adequate-
ly maintained become deteriorated, and are more de-
teriorated than well maintained roads. The mentioned 
pavements should be blocked to be repaired and 
maintained after the logging operations (Miller 2014). 
With the start of maintenance operations, road traffic 
increases and hence at the beginning of the road main-
tenance, deterioration is significant. However, with 
time, after maintenance operations, the deterioration 
of the road surface is reduced. We also believe that 
increasing the thickness of pavements, in the course of 
maintenance, is a reason to increase FRPD (Fig. 4), be-
cause maintenance operations do not improve com-
paction in these segments.

The composition (mixed, riverine and mountain) 
and thickness of road surface materials influences the 
FRPD, as high quality rock will not degrade into small-
er, more mobile particle sizes (Pérez and Gallego 
2010). Segments covered by the mountain material 
(40%) deteriorated more rapidly than those paved by 
mix or riverine materials. Mixed materials were found 
in 35 percent of segments, and they had lower dete-
rioration. The lowest deterioration was measured in 
the segment with riverine material pavement (Fig. 4). 
Thickness of pavement provides insurance against 
deterioration from the bottom layer (Giroud and Han 
2004). There is correlation between the rate of pave-
ment deterioration and pavement thickness (Giroud 
and Han 2004). Apparently, low thickness in higher 
traffic has a much greater effect causing deterioration 
(protrusion and pothole). The results showed that, 
with the decrease in thickness, pothole and protrusion 
increase, while rutting appears in high thickness (Fig. 
4). When thickness is low, soil strength is not sufficient 
to support the applied load from vehicles or equip-
ment traffic (ESAL) and thus potholes and protrusions 
occur on forest roads and trails (Cambi et al. 2015). 
High thickness of forest roads provide the surface for 
rutting in wet season, and after maintenance opera-
tions, traffic increases and tire pressure causes rutting 
(Fig. 4). The increase of water pressure can make com-
pletion material unsuitable and unstable and this may 
result in permanent deformation of the road surface 
and cause rutting (Rodgers et al. 2014). With the in-
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crease of thickness, rutting decreases. This is quite the 
contrary with protrusion, because with high thickness, 
first rutting occurs and after that protrusion appears. 
Protrusion is the result of soil compaction of heavy 
machinery during high traffic and dry season.

Road slope and elevation are two characteristics 
that often correlated with increased FRPD. This is 
physically intuitive because, as the slope and elevation 
of a road increase, potential energy increases and leads 
to higher erosive power of the skid log trucks (Loizos 
and Plati 2008). Pavement deterioration is the decisive 
deterioration process on inclined roads. While pot-
holes dominate on horizontal road segments, rutting 
and protrusion are found in high slope segments 
(Moghadami Rad et al. 2014). Fig. 8 shows the prob-
ability of maximum pothole occurrence at zero percent 
gradients, reducing at 5–8% gradient. The study lay-
out results at lower road gradients (Reid and Dunne 
1984). Ruts in upslope and high elevation can be filled 
with water causing it to drain along the road instead 
of draining away from the road (Caliskan 2013). Heav-
ily sloped roads (those with slopes greater than 10%) 
can become rutted very easily, because the driver/op-
erator uses extra capacity of the road when driving 
with heavy loads or under wet conditions. The prob-
ability of protrusion occurrence containing pothole 
distresses has been recorded at low slope, being sig-
nificant at 5–8% gradient, disappearing at 0–2% gradi-
ent (Fig. 4). Protrusions behave like ruts in slope and 
elevation.

The results indicate that road surface drainage was 
effective in preventing the development of deteriora-
tion (Fu et al. 2010). Engineered points were less than 
20 percent of the pavement deterioration. The average 
road segment length that was drained by cross-drain 
culverts or live-stream crossing culverts was apprecia-
bly different from the average for the entire database 
(Fig. 4). As the contact pressure from a tire is mainly 
supported by the completion layer, the load from the 
tire can increase the pore water pressure in the road 
material when drainage is restricted. When water re-
mains on the road surface on low slope segments, pot-
holes appear, while protrusion is seen in mountain 
roads.

The percentage of canopy that covers the road 
pavement is an important factor in pothole and pro-
trusion risk and has a significant influence on FRPD 
as well (Eskioglou 2003). Dense canopies protect the 
road surface from the water drop. However, when in-
terception decreases in high precipitation, deteriora-
tion increases. When canopy tends to be denser, light 
that reaches the road surface is reduced, and in this 
case, the road surface remains wet and severe deterio-

ration occurs. The results showed that high canopy, 
the highest measured was 80%, was sufficient to pro-
tect the road surface very well against precipitation 
and was enough open to let light reach the road sur-
face. Potholes were observed in road classes one and 
two that have low slope and canopy density. While 
the concentrated flow of surface water is the cause of 
erosion, protrusions are formed by pounding water. 
Therefore, the total amount of water falling on a cer-
tain area in high slope is an indicator for the occur-
rence of protrusions.

A FRP is susceptible to variations in climatic condi-
tions of the area in which the road is located. Since the 
segments are neighbors, the historical precipitation 
data did not vary significantly (Table 6 and 7), while 
pothole and rutting precipitation varied significantly. 
In rainy season, the moisture content in the road be-
comes higher and consequently the bearing capacity 
of the FRP is generally reduced causing rutting of the 
roads. In dry season, the moisture content of the FRP 
is reduced and this causes road protrusion.

Turns with drainage conditions were the effective 
variables on road deterioration in both models. The 
results showed that pavement deterioration increased 
with decreasing horizontal curve radius in turn. Ac-
cording to the results, due to drainage lakes and un-
even load distribution, deterioration was more severe 
in turns. One reason is that, in view of higher stress on 
curves, material is dislodged and thrown into the 
ditches. When the speed is constant, the centrifugal 
force of the moving trucks increases with the decrease 
in the radius of the horizontal curve (Kordani and Molan 
2014). This can distribute the uneven load on the road 
surface. If the specific slope was not considered on 
horizontal curves, the water would be collected on the 
road surface and the rutting and protrusion would 
occur severely. Moreover, the pavement layer of the 
road is damaged by increasing brake on horizontal 
curves and high longitudinal slopes (Burton et al. 
2014). In order to prevent pavement deterioration on 
road surface, the longitudinal slope should be de-
creased on horizontal curve to five degrees (Aricak 
2015). By increasing the number of turns, pavement 
deterioration increased but with only two turns, dete-
rioration was less. This is due to the lack of decelera-
tion of the truck driver when he makes two consecu-
tive turns not reducing the vehicle speed due to good 
visibility.

The pavement deterioration of forest roads varies 
as a result of length of time since construction, date of 
maintenance, pavement condition and traffic. The 19 
major explanatory variables were considered to inves-
tigate the type of deterioration of forest roads with LR 
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and ANN models. The factors that cause deterioration, 
potholes, ruts, and protrusion, will be the final input 
parameters for FRPMS. Hassan (2015) reported that 
logistic regression modeling is feasible for developing 
deterioration models of subjective distress data of 
pavement surfaces.

This paper develops two type models using pave-
ment distress data for forest roads. The deterioration 
modeling was based on FRP condition and response 
variable (pothole, rutting and protrusion) using two 
different models (ANN and LR). The results showed 
that ANN and LR models could be applied for the 
pothole, rutting, protrusion, and deterioration pro-
gression modeling of forest roads. These results are 
the same as those of Kaur and Pulugurta (2008) with 
the accuracy of the logistic regression model. Both 
models predicted two indices on rutting, pothole and 
protrusion: extent and severity. ANN and LR models 
were examined by carrying out various trials. The 
models showed a high area under ROC curve (AUC) 
between observed and predicted distresses of more 
than one ratio. This shows an efficacy of the suggested 
ANN and LR models (Hassan 2015). Although ANN 
models showed higher efficiency, the results obtained 
from LR were desirable. LR can describe very well the 
relationship between pothole, rutting and protrusion 
and a set of predictor variables due to model respon-
sibility in terms of natural data involving an environ-
mental condition. The models that have been chosen 
in this study are relevant to all forest environments. 
The origin of the model as well as the places and di-
versities of applications of the models provide an in-
dication of suitability.

Forest road pavement management database con-
sists of many different attributes that are both con-
tinuous and categorical in nature. In pavement man-
agement, it is often required to determine the type of 
repair needed for a pavement. This decision is based 
on the condition of the pavement - whether it is in 
good condition or fair condition, and also on different 
attributes such as traffic, weather conditions, etc. It is 
a complicated process to develop a statistical model 
based on all these attributes. In this study, a more 
straightforward approach was used using the actual 
data. An Artificial Neural Network was generated and 
then converted to simple rules. The rules were then 
tested on a test data set and the results showed that 
the accuracy of the model was approximately 85%. 
Furthermore, a logistic regression was used to classify 
the dataset and the results of the logistic regression 
model were compared to the ANNs. The accuracy of 
the logistic regression model was 82%.

There are several directions for future work be-
cause these generated models are the first models ap-
plied to forest roads. Further study is recommended 
to validate their performance in other forest roads and 
other conditions. Models that predict the pavement 
performance in feature years based on the current 
pavement distress condition can be a very crucial tool 
for allocating budget among alternative pavement 
managements and preservation projects for forest 
management authorities.

Acknowledgment
We would like to acknowledge Reza Goudarzi and 

Mehdi Kheirianpour for the collaboration in field sur-
veys. Appreciation also goes to Chobo O Kaghaz Com-
pany for their constructive comments on calibration 
and editorial advice and support.

6. References
Abu Jamous, H., 2013: Parametric Cost Estimation of Road 
Projects Using Artificial Neural Networks. M.Sc. Thesis, Is-
lamic University – Gaza Deanery of Graduate Studies, 1–100.

Adlinge, S., Gupta, A., 2013: Pavement Deterioration and its 
Causes. International Journal of Innovative Research and 
Development 2(4): 9–15.

Anifah, L., Purnama, I.K.E., Hariadi, M., Purnomo, M.H., 
2013: Osteoarthritis classification using self organizing map 
based on gabor kernel and contrast-limited adaptive histo-
gram equalization. The open biomedical engineering journal 
7: 18–28.

Aricak, B., 2015: Using remote sensing data to predict road 
fill areas and areas affected by fill erosion with planned for-
est road construction: a case study in Kastamonu Regional 
Forest Directorate (Turkey). Environmental monitoring and 
assessment 187(7): 417.

Bent, D., Rusu, L., Podean, M., Arba, R., 2012: Web Based 
pavement maintenance and monitoring system, in: 2nd 
World Conference on Innovation and Computer Sciences. 
Procedia Information Technology & Computer Science, Cluj 
Napoca, Romania, 353–357 p.

Burton, M., Kim, M., Smit, A., Trevino, M., Wu, H., Murphy, 
M., Prozzi, J., 2014: Flexible Pavement Narrow Widening 
Best Practices and Lessons Learned. National Technical In-
formation Service 6748, 1–175.

Caliskan, E., 2013: Environmental impacts of forest road con-
struction on mountainous terrain. Iranian journal of envi-
ronmental health science & engineering 10(1): 23.

Cambi, M., Certini, G., Neri, F., Marchi, E., 2015: The impact 
of heavy traffic on forest soils: A review. Forest Ecology and 
Management 338: 124–138.



Pavement Deterioration Modeling for Forest Roads Based on Logistic Regression ... (271–287)	 M.J. Heidari et al.

Croat. j. for. eng. 39(2018)2	 285

Coulter, E.D., Sessions, J., Wing, M.G., 2006: Scheduling for-
est road maintenance using the analytic hierarchy process 
and heuristics. Silva Fennica 40(1): 143–160.

Dong, Q., 2011: Enhancement of Pavement Maintenance De-
cision Making by Evaluating the Effectiveness of Pavement 
Maintenance Treatments. PhD. Dissertation, University of 
Tennessee, 1–158.

Eroglu, H., Acar, H., Eker, M., 2003: An Evaluation of The 
Forest Road Superstructure in Turkey, in: 12th World For-
estry Congress. Congress Procceding, Quebec, 4–6.

Eskioglou, P.C.H., 2003: Forest Engineering and Environ-
ment Protection. 8th International Conference on Environ-
mental Science and Technology. Lemnos island, Greece 8–10 
September, 186–192.

Faghih-Imani, A., Amador Jimenez, L., 2013: Toward Sus-
tainable Pavement Management: Incorporating Environ-
mental Impacts of Pavement Treatments into a Performance-
Based Optimization. Transportation Research Record: 
Journal of the Transportation Research Board 2366: 13–21.

Fassman, E.A., Blackbourn, S.D., 2011: Road Runoff Water-
Quality Mitigation by Permeable Modular Concrete Pavers. 
Journal of Irrigation and Drainage Engineering 137(11): 
720–729.

Forsyth, A.R., Bubb, K.A., Cox, M.E., 2006: Runoff, sediment 
loss and water quality from forest roads in a southeast 
Queensland coastal plain Pinus plantation. Forest Ecology 
and Management 221 (3–1): 194–206.

Friedman, J., Hastie, T., Tibshirani, R., 2000: Additive logistic 
regression: a statistical view of boosting (With discussion 
and a rejoinder by the authors). The Annals of Statistics 
28(2): 337–407.

Fu, B., Newham, L.T.H.H., Ramos-Scharron, C.E., Ramos-
Scharrón, C.E., 2010: A review of surface erosion and sedi-
ment delivery models for unsealed roads. Environmental 
Modelling & Software 25(1): 1–14.

Gatto, L.W., 2001: Overwinter changes to vehicle ruts and 
natural rills and effects on soil erosion potential, in: 10th In-
ternational Soil Conservation Organization Meeting. Na-
tional Soil Erosion Laboratory, Purdue University, 378–383.

Giroud, J.P., Han, J., 2004: Design Method for Geogrid-Re-
inforced Unpaved Roads. II. Calibration and Applications. 
Journal of Geotechnical and Geoenvironmental Engineering 
130(8): 787–797.

Gonen, M., 2006: Receiver operating characteristic (ROC) 
curves. SAS Users Group International (SUGI) 31, 210–231.

Hahne, J.M., Biebmann, F., Jiang, N., Rehbaum, H., Farina, 
D., Meinecke, F.C., Muller, K.-R., Parra, L.C., 2014: Linear 
and nonlinear regression techniques for simultaneous and 
proportional myoelectric control. Neural Systems and Reha-
bilitation Engineering, IEEE Transactions on 22, 269–279.

Han, D., Kaito, K., Kobayashi, K., 2014: Application of Bayes-
ian estimation method with Markov hazard model to im-

prove deterioration forecasts for infrastructure asset man-
agement. KSCE Journal of Civil Engineering 18(7): 2107–2119.

Hassan, R.A., 2015: Modelling bituminous surfacing distress 
data using logistic regression. WIT Transactions on The Built 
Environment 146: 435–446.

Hill, M., 2011. Building design and construction handbook, 
6th ed. Donnelley and Sons Company, New York.

Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X., 2013. Ap-
plied logistic regression. John Wiley & Sons.

Humphrey, L., Arbuckle, R., Moldwin, R., Nordling, J., van 
de Merwe, J.P., Meunier, J., Crook, T., Abraham, L., 2012: The 
bladder pain/interstitial cystitis symptom score: develop-
ment, validation, and identification of a cut score. European 
urology 61(2): 271–279.

Izenman, A.J., 2008. Modern Multivariate Statistical Tech-
niques, Springer Texts in Statistics. Springer New York, New 
York, NY.

Jaafari, A., Najafi, A., Rezaeian, J., Sattarian, A., Ghajar, I., 
2015: Planning road networks in landslide-prone areas: A 
case study from the northern forests of Iran. Land Use Poli-
cy 47: 198–208.

Kaur, D., Pulugurta, H., 2008: Comparative analysis of fuzzy 
decision tree and logistic regression methods for pavement 
treatment prediction. WSEAS Transactions on Information 
Science and Applications 5(6): 979–990.

Kordani, A.A., Molan, A.M., 2014:The effect of combined 
horizontal curve and longitudinal grade on side friction fac-
tors. KSCE Journal of Civil Engineering 19(1): 303–310.

Kumar, K., Parida, M., Katiyar, V.K., 2013: Short Term Traf-
fic Flow Prediction for a Non Urban Highway Using Artifi-
cial Neural Network. Procedia – Social and Behavioral Sci-
ences 104, 755–764.

Lee, S.-T., Park, D.-W., Mission, J.L., 2013: Estimation of 
pavement rehabilitation cost using pavement management 
data. Structure and Infrastructure Engineering 9(5): 458–464.

Lin, O., Hassan, R., Thananjeyan, A., 2014: Pavement condi-
tion modelling by using surface condition data–a VicRoads 
study. ARRB Conference, 26th, Sydney, New South Wales, 
Australia 8(2): 16 p.

Loizos, A., Plati, C., 2008: An alternative approach to pave-
ment roughness evaluation. International Journal of Pave-
ment Engineering 9(1): 69–78.

McQueen, J., Timm, D., 2005: Part 2: Pavement Monitoring, 
Evaluation, and Data Storage: Statistical Analysis of Auto-
mated Versus Manual Pavement Condition Surveys. Trans-
portation Research Record: Journal of the Transportation 
Research Board 1940: 53–62.

Miller, R.H., 2014: Influence of log truck traffic and road 
hydrology on sediment yield in western Oregon. PhD. Dis-
sertation.

Moghadami Rad, M., Abdi, E., Mohseni Saravi, M., Rouhani, 
H., Majnounian, B., 2014: Effect of Forest Road Gradient on 



M.J. Heidari et al.	 Pavement Deterioration Modeling for Forest Roads Based on Logistic Regression ... (271–287)

286	 Croat. j. for. eng. 39(2018)2

Amount of Runoff and Sediment (Case Study: Kohmiyan- 
Azadshahr Forest). Journal of Forest and wood products 66: 
389–399.

Moreno-Navarro, F., Sol-Sánchez, M., Rubio-Gámez, M.C., 
2015: Exploring the recovery of fatigue damage in bitumi-
nous mixtures: the role of healing. Road Materials and Pave-
ment Design 16(1): 75–89.

Movagharnejad, K., Nikzad, M., 2007: Modeling of tomato 
drying using artificial neural network. Computers and Elec-
tronics in Agriculture 59(1–2): 78–85.

Ouma, Y.O., Opudo, J., Nyambenya, S., 2015: Comparison 
of Fuzzy AHP and Fuzzy TOPSIS for Road Pavement Main-
tenance Prioritization: Methodological Exposition and Case 
Study. Advances in Civil Engineering 2015: 1–17.

Owolabi, A., Oladapo Samson, A., 2011: Development of 
Priority Index Assessment Model for Road Pavements in 
Nigeria, in: 8th International Conference on Managing Pave-
ment Assets. Managing Pavement Assets, Abeokuta, 12 p.

Pérez, I., Gallego, J., 2010: Rutting prediction of a granular 
material for base layers of low-traffic roads. Construction 
and Building Materials 24(3): 340–345.

Peshkin, D.G., 2011: Guidelines for the Preservation of High-
traffic-volume Roadways. Transportation Research Board, 
511 p.

Phillips, J., Cripps, E., Lau, J.W., Hodkiewicz, M.R., 2015: 
Classifying machinery condition using oil samples and bi-
nary logistic regression. Mechanical Systems and Signal 
Processing 60: 316–325.

Potočnik, I., Hribernik, B., Nevečerel, H., Pentek, T., 2015: 
Maintenance of forest roads – the need for sustainable forest 
management, in: Forest Engineering Current Situation and 
Future Challenges. CROJFE, Zalesina, Zagreb, 5–8 p.

Rao, S.G., 2000: Artificial Neural Networks in Hydrology. I: 
Preliminary Concepts. Journal of Hydrologic Engineering 
5(2): 115–123.

Reid, L.M., Dunne, T., 1984: Sediment production from for-
est road surfaces. Water Resources Research 20(11): 1753–
1761.

Roberts, C.A., Attoh-Okine, N.O., 1998: A Comparative 
Analysis of Two Artificial Neural Networks Using Pavement 
Performance Prediction. Computer-Aided Civil and Infra-
structure Engineering 13(5): 339–348.

Rodgers, M., Kielty, A., Healy, M.G., 2014: Performance of 
Granitic, Shale, and Limestone Forest Road Aggregates Sub-
jected to Repeated Loading. Journal of Transportation Engi-
neering 140(4): 4014002.

Russell, C., Eberhart, R.W.D., 1990: Neural Network PC 
Tools: A Practical Guide. Academic Press, 300 p.

Rusu, L., Taut, D.A.S., Jecan, S., 2015: An Integrated Solution 
for Pavement Management and Monitoring Systems. Proce-
dia Economics and Finance 27: 14–21.

Saha, P., Liu, R., Melson, C., Boyles, S.D., 2014: Network 
Model for Rural Roadway Tolling with Pavement Deteriora-
tion and Repair. Computer-Aided Civil and Infrastructure 
Engineering 29(5): 315–329.

Salour, F., Erlingsson, S., 2013: Investigation of a pavement 
structural behaviour during spring thaw using falling 
weight deflectometer. Road Materials and Pavement Design 
14(1): 141–158.

Santos, J., Ferreira, A., 2013: Life-cycle cost analysis system 
for pavement management at project level. International 
Journal of Pavement Engineering 14(1): 71–84.

Schaefer, V., White, D., Ceylan, H., Stevens, L., 2008: Design 
Guide for Improved Quality of Roadway Subgrades and 
Subbases. InTrans Project Reports.

Schlotjes, M.R., 2013: The development of a diagnostic ap-
proach to predicting the probability of road pavement fail-
ure. PhD. Dissertation, ResearchSpace, Auckland.

Semeida, A.M., 2015: Derivation of level of service by artifi-
cial neural networks at horizontal curves: a case study in 
Egypt. European Transport Research Review 7(1): 4.

Sen, T., 2013: Pavement management analysis of Hamilton 
County using HDM-4 and HPMA. Masters Theses and PhD. 
Dissertation.

Shahnazari, H., Tutunchian, M.A., Mashayekhi, M., Amini, 
A.A., 2012: Application of Soft Computing for Prediction of 
Pavement Condition Index. Journal of Transportation Engi-
neering 138(12): 1495–1506.

Sharma, D., McGee, D., Kibria, B.M.G., 2011: Measures of 
Explained Variation and the Base-Rate Problem for Logistic 
Regression. American Journal of Biostatistics 2(1): 11–19.

Si, J., Feng, Q., Wen, X., Xi, H., Yu, T., Li, W., Zhao, C., 2015: 
Modeling soil water content in extreme arid area using an 
adaptive neuro-fuzzy inference system. Journal of Hydrol-
ogy 527: 679–687.

Smith, D.M., 1993: Effects of Variable Tire Pressure on Road 
Surfacings. Volume 2: Analysis of Test Results.

Suman, S.K., Sinha, S., 2012: Pavement Condition Forecast-
ing Through Artificial Neural Network Modelling. Interna-
tional Journal of Emerging Technology and Advanced Engi-
neering 2(11): 474–478.

Sun, L., Cai, X., Yang, J., 2007: Genetic algorithm-based op-
timum vehicle suspension design using minimum dynamic 
pavement load as a design criterion. Journal of Sound and 
Vibration 301(1–2): 18–27.

Sundin, S., Braban-Ledoux, C., 2001: Artificial Intelligence-
Based Decision Support Technologies in Pavement Manage-
ment. Computer-Aided Civil and Infrastructure Engineer-
ing 16(2): 143–157.

Tabatabaee, N., Ziyadi, M., Shafahi, Y., 2013: Two-Stage Sup-
port Vector Classifier and Recurrent Neural Network Predic-
tor for Pavement Performance Modeling. Journal of Infra-
structure Systems 19(3): 266–274.



Pavement Deterioration Modeling for Forest Roads Based on Logistic Regression ... (271–287)	 M.J. Heidari et al.

Croat. j. for. eng. 39(2018)2	 287

Thube, D.T., 2012: Artificial neural network (ANN) based 
pavement deterioration models for low volume roads in In-
dia. International Journal of Pavement Research and Tech-
nology 5(2): 115–120.

Tunay, M., 2006: The assessment of environmentally sensi-
tive forest road construction in Calabrian pine forest areas 
of Turkey. Journal of Environmental Biology 27(3): 529–535.

Wang, H., 2011: Analysis of tire-pavement interaction and 
pavement responses using a decoupled modeling approach. 
PhD. Dissertation, University of Illinois at Urbana-Cham-
paign.

Wang, H., Al-Qadi, I., 2009: Combined Effect of Moving 
Wheel Loading and Three-Dimensional Contact Stresses on 
Perpetual Pavement Responses. Transportation Research 
Record: Journal of the Transportation Research Board 2095: 
53–61.

Xu, G., Bai, L., Sun, Z., 2014: Pavement Deterioration Model-
ing and Prediction for Kentucky Interstate and Highways. 
Proceedings of the 2014 Industrial and Systems Engineering 
Research Conference, 993 p.

Yang, J., 2004: Road crack condition performance modeling 
using recurrent Markov chains and artificial neural net-
works. Graduate Theses and PhD. Dissertations.

Yang, J., Lu, J., Gunaratne, M., Xiang, Q., 2003: Forecasting 
Overall Pavement Condition with Neural Networks: Appli-
cation on Florida Highway Network. Transportation Re-
search Record: Journal of the Transportation Research Board 
1853: 3–12.

Yee, C.S., Roelofs, T.D., 1980: Planning forest roads to protect 
salmonid habitat. General Technical Report PNW 1, 9 p.

Zhang, H., Keoleian, G.A., Lepech, M.D., 2013: Network-
Level Pavement Asset Management System Integrated with 
Life-Cycle Analysis and Life-Cycle Optimization. Journal of 
Infrastructure Systems 19(1): 99–107.

Zhang, H., Lepech, M.D., Keoleian, G.A., Qian, S., Li, V.C., 
2010: Dynamic Life-Cycle Modeling of Pavement Overlay 
Systems: Capturing the Impacts of Users, Construction, and 
Roadway Deterioration. Journal of Infrastructure Systems 
16(4): 299–309

Received: April 09, 2017
Accepted: February 27, 2018

Authors’ addresses:

Mohammad Javad Heidari, MSc.
e-mail: javad.hedari@gmail.com
Assoc. prof. Akbar Najafi, PhD. *
e-mail: a.najafi@modares.ac.ir
Assist. Prof. Seyedjalil Alavi, PhD.
e-mail: j.alavi@modares.ac.ir
Tarbiat Modares University
Faculty of Natural Resources & Marine Sciences
P.O.Box: 14115-111 Tehran
IRAN

* Corresponding author


