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Abstract

The investigation of the effects of the noise generated by harvesting equipment on the environ-
ment is one of the important topics in sustainable forestry. During timber harvesting, not only 
workers but also wildlife are exposed to the noise generated. Exposure to noise has both direct 
and indirect effects on humans and wildlife. The negative effects of noise exposure can be ob-
served depending on its intensity and duration. Noise exposure, which has various psycho-
logical and physiological effects on humans, also negatively affects plants and animals. In this 
study, sound measurements of the chainsaw were conducted during thinning operations 
within the boundaries of the Alara Forest Management Directorate in Alanya, Antalya Prov-
ince. The measurement area is a Turkish red pine (Pinus brutia Ten.) stand with a canopy 
density of 60–65%, a slope of 30–35%, and tree diameters ranging from 20 to 35 centimeters. 
The noise emitted by the chainsaw during production, ranging from approximately 1 meter 
to 200 meters, has been modeled using a feedforward Artificial Neural Network (FANN) for 
sound propagation. The measurement data was used 60% for training, 20% for testing, and 
20% for validation. Random trees were assigned to noise attenuation effects on the sound 
according to the stand characteristics of the study area. Thus, it was aimed to create a realistic 
sound propagation model and estimation maps. The average performance metrics of the mod-
el, RMSE and R² values, were calculated as 4.84 and 0.88, respectively. According to the sound 
propagation model predicted by the FANN as a static model, it is estimated that the distance 
at which the chainsaw could affect wildlife behavior is 400 meters or less.
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1. Introduction
Forest harvesting operations are among the most 

important topics in sustainable forest management. By 
combining the requirements of forestry production 
and the philosophy of sustainability, innovative forest 
harvesting machines and tools have been developed. 
Thus, scientific research and technologies guiding 
modern forestry production contribute to sustainable 
use of forest ecosystems (Schweier et al. 2019). Engi-
neering science has been used for optimum produc-
tion and utilization in forest ecosystems that contain 
many variables. Within the scope of forest engineer-
ing, harvesting operations have been promoted and 
rapidly spreading to reduce environmental, economic 
and social impacts (Marchi et al. 2018). According to 

research on economic and environmental aspects 
within the scope of sustainable timber production, so-
cial aspects (physical workload, exposure to vibration, 
and noise) remain in the minority (Grünberg et al. 
2023). Sustainable forest operations and timber pro-
duction carried out within the scope of forestry ac-
tivities is currently being implemented with the help 
of various mechanical tools and equipment (Sessions 
2007). The most basic and common timber production 
tool is gasoline-powered chainsaws. Today, many 
types and models of motorized chainsaws with differ-
ent features are still widely used. Battery-powered 
electric chainsaws, with the advantages of low noise 
and vibration, provide significant benefits for urban 
use and pruning tasks, while gasoline powered chain-
saws are still preferred for heavier tasks (Montorselli 
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et al. 2010, Colantoni et al. 2016, Neri et al. 2018). Re-
search is ongoing to develop additional tools that 
could become sustainable timber harvesting equip-
ment. Chainsaws used in forest operations, which are 
powerful, two-stroke engine tools, are highly useful. 
They are used for tree cutting and felling, bucking, 
and debarking in forestry production (Eker et al. 
2011). There is a significant amount of research on the 
ergonomic use of chainsaws and their impact on 
worker health. Among these studies, the harmful ef-
fects of chainsaw vibration, noise, and exhaust emis-
sions are quite common (Leszczyński 2014, Marchi et 
al. 2017, Golmohammadi and Darvishi 2020).

The studies focusing on the effects of chainsaw 
noise on workers' health are more prevalent than 
those investigating its environmental impact and the 
modeling of sound propagation. Chainsaws are 
among the noisy machines that have direct and indi-
rect effects on other living organisms (especially wild 
animals) in forest ecosystems (Chan et al. 2010, Tilgar 
et al. 2022). The anthropogenic-based noise distur-
bance on wildlife is a threat especially for organisms 
living in terrestrial ecosystems (Barber et al. 2010). 
According to Billo et al. (2019), the noise levels in for-
estry work are 102.05 dB(A) for felling, 99.20 dB(A) for 
logging, and 95.14 dB(A) for delimbing. For example, 
the sound pressure level (Lp) according to ISO 22868 
is 106 dB(A). The sound power level (Lw) according 
to ISO 22868 is 117 dB(A). The measured and the guar-
anteed sound power level have been determined in 
accordance with Directive 2000/14/EC, Annex V, and 
standard ISO 9207. Besides, Directive 2003/10/EC, 
which focuses on occupational health and safety by 
establishing exposure action values and limit values 
for workers’ personal noise exposure, sets specific 
thresholds (ISO 1999:1990), including an upper expo-
sure action value of 85 dB(A) and an exposure limit 
value of 87 dB(A), measured as daily or weekly per-
sonal exposure (EPC 2000, 2003). According to Stihl 
(2020), the measured sound power level is 117 dB and 
the guaranteed sound power level 119 dB(A). These 
values are above the recommended 85 dB(A) limit for 
long-term exposure and pose a risk to workers. For 
example, a worker operating at a sound level of 102 
dB(A) can work without protection for only 45 min-
utes according to occupational health and safety reg-
ulations. Similarly, the maximum exposure time for a 
worker working at a sound level of 99.2 dB(A) is 1 
hour. Hearing loss has been observed in chainsaw 
operators and forest workers due to time exposed to 
high frequency sounds (Tunay and Melemez 2008, 
Fonseca et al. 2015, Billo et al. 2019).

The noise produced by chainsaws, which has an 
impact on worker health, can also disturb wildlife, 
altering animal behavior, communication, and habitat 
use (Proto et al. 2016, Shannon et al. 2016). Some stud-
ies report that the responses of terrestrial wild ani-
mals begin at noise levels of approximately 40 dB(A) 
(Shannon et al. 2016). For example, Zeller et al. (2024) 
investigated wild animal responses to noise caused 
by human activities (hiking, mountain biking, trail 
running, and off-highway vehicles) carried out in rec-
reation areas. Fleeing and vigilance responses of wild 
animals to noise ranging from 53 to 59 dB were ob-
served. It was determined that recreational noise 
caused a decrease in wildlife in the environment. In 
addition, the disturbing effect of sound on wild ani-
mals is the most well-known example of its use as a 
repellent tool. Sound systems are among the active 
methods used to remove wild animals from the envi-
ronment. They are audible (infrasonic), ultrasonic and 
biosonic sounds. Therefore, when evaluating the ef-
fects on animals, not only the dB(A) value but also 
factors such as the frequency composition and dura-
tion of exposure should be taken into account. Sound 
is used as a repellent especially to prevent birds from 
causing »bird strike« incidences at airports (Gülci 
2011). In short, the direct effects of noise in habitats 
are more easily observed on wildlife. The presence of 
living things, that are directly or indirectly affected in 
their habitats, decreases. For example, birds or polli-
nator insects affected by the sound move away from 
the environment, which causes a decrease in pollina-
tion of plants. This situation can change plant com-
munities and ecosystem structure in the long term 
(Francis et al. 2012). The effects of noise on the popu-
lation are continuous and uncertain but potentially 
very serious, and managers should be cautious and 
prefer scientific, flexible and uncertainty-capable 
methods when making decisions (Wright et al. 2007). 
According to the Habitats Directive (92/43/EEC), any 
project or plan that may »affect« a protected area or 
species must be subject to appropriate assessment, 
regardless of whether the impact is direct, indirect or 
uncertain (EPC 1992).

It is easier to measure, model and control the noise 
emitted by a loud sound source in a defined area 
when compared to noise studies carried out in an 
open environment. In areas such as forests, where 
there are many different variations in interactions be-
tween living and non-living groups, noise measure-
ment, propagation modeling and sound reducing 
studies will require high costs. Many methods and 
tools have been developed for sound pollution prop-
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agation modeling for different types of sound sources. 
The Noise Model Simulation (NMSim) is a computer 
model that generates time histories of noise from 
moving sources, taking into account the effects of real 
terrain on sound propagation (Ikelheimer and Plotkin 
2005). SPreAD-GIS is one of the first free, open-source 
tools available for modeling the propagation of an-
thropogenic sound in natural ecosystems in a GIS 
environment (Reed et al. 2012). Proto et al. (2016) ap-
plied sound propagation models by using SPreAD-
GIS to assess how sound travels through forested 
landscapes, considering variables such as terrain, 
vegetation, and machine types. Akay et al. (2022) per-
formed the sound propagation analysis of the chain-
saw used in the tree cutting stage of forest harvesting 
with SPreAD-GIS. It is quite difficult to determine the 
effect of sound pollution on wildlife with the help of 
conventional and classical equations because there 
are many environmental factors that are effective in 
sound damping. It may be appropriate to develop and 
use models that do not ignore these factors (Shannon 
et al. 2016).

In this study, the sound emitted by the chainsaw 
used during thinning cuts in a Turkish red pine stand 
was modeled using an artificial neural network. A 
model was created with feed forward ANN (FANN) 
in order to simulate the propagation of chainsaw 
sound in the stand environment. Considering field 
measurements and literature, a prediction model was 
created to estimate how far chainsaw sound can reach 
within the stand and it was discussed whether it 
would have an impact on wild animals. Briefly, 
FANN can accurately model chainsaw noise propaga-
tion during forest operations, and the distances of 
predicted noise levels that impact wildlife behavior.

2. Materials and Methods

2.1 Material

2.1.1 Study Area
This study was conducted in a Turkish red pine 

stand located within the boundaries of the Alara For-
est Management Directorate in the Alanya District of 
Antalya Province. The measurements were taken on a 
sunny and slightly cloudy day during the summer 
season. The average temperature was 26°C, and the 
average wind speed was 7 km/h.

2.1.2 Software and Devices
In the study, a laptop with an i7 processor, 32 GB 

of RAM, and a 16 GB graphics card was used. The 
sound measurement was conducted using a Delta 

OHM HD2010 sound level meter. It is a sound mea-
surement device suitable for free-field (FF) acoustic 
environment, with windscreen protection open, a 
sampling time of 0.031 seconds, multiple (MULTI) in-
tegration mode, an integration time of 5 seconds, a 
profile time of 0.125 seconds, a spectrum profiling time 
of 0.5 seconds, a 3 dB change rate, and capable of 
reaching a level of 141 dB.

All data preprocessing, model training, and visu-
alization were conducted in a Jupyter Notebook envi-
ronment using Python. Jupyter Notebook provides an 
interactive computational platform that facilitates 
step-by-step execution, debugging, and real-time vi-
sualization of results (Kluvyer et al. 2016). The note-
book environment was integrated with TensorFlow 
and python libraries to perform sound attenuation 
modeling and analysis (McKinney 2012, Abadi et al. 
2016).

2.2 Methods

2.2.1 Sound Measurement
Sound level measurements were carried out in the 

work area where tree cutting and log production re 
performed using a chainsaw in a forested area. The 
chainsaw operator was instructed to cut the trees we 
pointed out, which had been previously specified by 
the authorized forestry officials for cutting. The chain-
saw was considered as the central sound source. 
Sound measurements were taken from the center of 
the slope upwards, towards the north. The measure-
ments were started approximately 1 meter away from 
the sound source. Measurements were taken every 10 
meters up to a total distance of 200 meters (Fig. 1). 
Distance measurements were conducted using a 
10-meter synthetic rope, which was maintained as par-
allel to the ground surface as possible to follow the 
terrain profile accurately. The sound measurement 
device was carried at chest height (≈1.30 m) while the 
measurements were taken. The measurement dura-
tion was approximately 70 minutes.

With the sound level meter, sound data including 
»LAeq_dB« (A-weighted Equivalent Continuous 
Sound Level), »LCpkmax_dB« (C-weighted Peak 
Sound Pressure Level ), and »LZFp_dB« (Z-weighting 
Fast Time-Weighted Sound Level ) were recorded ev-
ery 5 seconds (Table 1). For the neural network (NN) 
sound propagation prediction model, distance and 
LAeq_dB values were used.

2.2.2 Data Pre-processing
The relationships between the independent vari-

able (distance) and the dependent variable (sound 
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level, in dB) were modeled based on the measure-
ments obtained. First, the variables were standardized 
for use in the FANN analysis. Thus, it was aimed to 
make the model more sensitive to small-scale changes. 
Therefore, the distance (X) and sound dB (Y) variables 
were standardized as given in Eq. (1, 2). 

	 ' X
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X
X
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=
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Where:
μ	 the mean of the dataset
σ	 the standard deviation.

The ANN model was divided into training, testing, 
and validation sets using the sound data, with 60% for 
training, and 20% each for testing and validation. 
Thus, the ANN model was run to allow both learning 
and validation on the test data.

2.2.3 Artificial Neural Network (ANN) Model
In this study, modeling was performed using a 

feedforward artificial neural network (FANN). Feed-
forward neural networks, as one of the fundamental 
models in machine learning and artificial intelligence, 
have a wide range of applications. FANN models, de-
veloped with activation functions, optimization algo-

Fig. 1 Representation of uphill measurement points in the field

Table 1 Statistical summary of field measurements

LAeq_dB LCpkmax_dB LZFp_dB

Count 831 831 831

Mean 61.95 83.85 73.64

Std 13.94 11.82 9.45

Minimum 42.6 67.5 59.9

25% 52.1 74.9 66.7

50% 56.4 79.9 70.3

75% 68.7 90.55 78.4

Maximum 101.6 122.4 105.1

Variance 194.4596 139.6848 89.25458
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rithms, and model evaluation methods, produce suc-
cessful results in classification and regression problems 
(Glorot and Bengio 2010). The model structure consists 
of 1 input layer with 1 neuron, 4 hidden layers with 
20 neurons each, and 1 output layer with 1 neuron 
(Fig. 2).

ReLU (Rectified Linear Unit) was used for the ac-
tivation of the hidden layers. For predicting the sound 
level, a linear activation function was used for the out-
put neuron. For compiling and training the model, the 
frequently used ADAM (Adaptive Moment Estima-
tion) algorithm was used for optimizing the scattered 
data (Kingma and Ba 2014). The first equation calcu-
lates a moving average of the gradients (mt) using an 
exponential decay factor β1. The second equation com-
putes a moving average of the squared gradients (vt) 
with decay factor β2. Finally, the third equation up-
dates the parameters (θt) by subtracting a scaled ver-
sion of the first moment (mt) divided by the square 
root of the second moment (vt) plus a small constant e 
for numerical stability. This method adapts the learn-
ing rate for each parameter, leading to efficient con-
vergence in training deep learning models. The data-

set was created by repeating it 500 times and 
processing it in batches of 10 each time. Additionally, 
to prevent overfitting and avoid excessive training of 
the model, early stopping was used. 

	 1 1 1(1 )t t tm m g−= + −b b 	 (3)

	 2
2 1 2(1 )t t tv v g−= + −b b 	 (4)

	 1
t

t t
t

a m

v−
×

= −
+

q q
e
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Where:
gt	 gradient
mt	 moment estimation
vt	 variance estimation
θt	 parameter update
α	 learning rate.

The difference between the observed instantaneous 
losses and the predicted sound levels was calculated 
using Mean Squared Error. Additionally, Mean Abso-
lute Error (MAE), Root Mean Squared Error (RMSE), 
and R² Score (Coefficient of Determination) were used 
to evaluate model prediction performance.

Fig. 2 Representation of performed neural network structure in this study
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2.2.4 Sound Distribution Area
A prediction model for sound distribution in a 

needleleaf forest environment was developed using 
the model trained with an ANN. A test area was cre-
ated in a virtual environment to predict the impact 
area of the sound distribution model. The sound dis-
tribution was presented in a forest area with a ground 
slope of 35% and 65% canopy cover in the test area. A 
height function was created for any ymax and ymin 
point (Eq. 10, 11). The 3D terrain graph was visualized 
using the relationship between the maximum and 
minimum values of the created function and the 0.65 
canopy coefficient. It was carried out by randomly dis-
tributing the diameter distributions of conifer species 
within the forest, with values ranging from 25 cm to 
35 cm, across the area. Additionally, it was assumed 
that the crown area of the trees could range from 30 to 
95 m² in a circular shape. Number of trees (Ntrees) was 
calculated by dividing the total area (m2) by the aver-
age tree crown area (Eq. 12).

	 max min max min( ) ( )Area x x y y= − × − 	 (10)

	
min( ) 0.35 ( )z y y y= × − 	 (11)

Where:
z(y)	 elevation at the y point
ymin	 the lowest point on the y-axis
y	 any value on the y-axis
0.35	 represents the slope of study area (35%).

	 0.65 ( )
20 95

2

trees
Area

N
 × =

+ 
 
 

	 (12) 
 

Briefly, the aim here is to create a random tree 
placement in a terrain with a specific slope, simulating 
the number of trees, their locations, trunk diameters, 
and crown areas. Due to the effect of the slope, there 
are different z elevations at different y positions, and 
the tree crown areas have been randomly distributed 
according to a specific target (Fig. 3).

2.2.5 Sound Attenuation by Trees
Initially, grids were created in a two-dimensional 

plane. The sound levels predicted by the ANN model 
were applied to each grid. Then, the sound attenuation 
process was performed using a cyclic equation (Eq. 
13). The randomly determined positions of the trees 
(tree_x = x[i]tree, tree_y = y[i]tree) and the radius calcu-
lated from the crown area (crown_radius = r[i]crown) were 
considered. The sound attenuation/sound barrier, de-
pending on the vegetation density level, species, and 
physiological characteristics (such as diameter, 

Fig. 3 3D simulation of the 35% slope terrain and distribution of pine trees (a), and 2D view of pine trees randomly scattered on terrain (b)
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branches, and leaf width), was considered to have a 
reducing effect of 2–3 dBA in a single tree and an aver-
age reduction of 9 to 11 dB in tree clusters with a depth 
of 5 m (Ow and Ghosh 2017, Lu et al. 2024). Consider-
ing ISO 9613-2:1996 (Acoustics – Attenuation of Sound 
during Propagation Outdoors), foliage and tree trunks 
further reduce sound beyond geometric spreading, 
with high dense forest cover potentially attenuating 
sound by 10–15 dB. Accordingly, a linear calculation 
was made, assuming that the sound level could be at-
tenuated by 10 dB in the portion of the crown area of 
the tree, as predicted by the equation. In other words, 
a »binary« approach was adopted. In this study, each 
grid point was considered either fully under vegeta-
tion influence (10 dB reduction) or ineffective (0 dB 
reduction). Briefly, points within the crown area of any 
tree are true, and those outside are false.

	 2 2 2( ) ( ) ( )
tree tree crown

x x i y y i r i     − + − ≤      	 (13)

3. Results

3.1 Field Measurements
In the field studies, sound measurements were 

taken at distances ranging from approximately 1 me-
ter to 200 meters. The sound measurement records and 
measurement work were completed in approximately 
1 hour and 10 minutes. The highest sound level pro-
duced by the chainsaw during operation was mea-
sured at 101.6 dB, while the lowest was measured at 
42.6 dB (Table 2).

3.2 Data Training and Results
The developed FANN model used a fully connect-

ed structure starting with 1 input neuron, consisting 
of five layers (4 hidden layers, each with 20 neurons, 
and 1 output neuron). The model used the ReLU acti-
vation function and a linear output activation; the 
Adam optimization algorithm was used during the 
training process. The training data was split into 60%, 
followed by 20% for the test data, and 20% for the 
validation data. The model was instructed to be trained 
for 500 epochs with a batch size of 10. However, to 
prevent the model from being overtrained, the stop 
function was activated. Therefore, after 50 epochs, the 
model training reached an optimal position (Fig. 5). 
Since the RMSE and MAE were at reasonable levels, 
the MSE was interpreted as within an acceptable range 
(Table 3).

It can be seen in Fig. 4 that the model generalizes 
the sound data measured in the field well and that the 
risk of overfitting is low. The model has not been able 

to capture each field measurement exactly, but it has 
been able to capture the overall trend. The model has 
accurately captured both the systematic decreasing 
trend and managed to keep a large portion of the data 
close to the prediction curve. This indicates that the 
model is generally capable of good generalization and 
that its predictions are consistent with the actual mea-
surements. As the distance increases, the sound inten-
sity decreases rapidly up to the first 50 meters.

The change in the training loss and validation loss 
values of the FANN model with respect to the num-

Table 2 Descriptive statistics of chainsaw sound (LAeq_dB) mea-
surements

Distance, m Mean, dB SD, dB Minimum Maximum

1 90.62 6.80 63.90 101.60

10 75.83 6.79 56.20 83.50

20 68.47 6.25 51.60 77.10

30 64.99 3.81 49.10 70.50

40 59.88 5.05 49.70 67.80

50 58.61 5.94 45.80 68.80

60 55.32 2.56 50.30 59.50

70 56.79 4.02 47.20 63.70

80 55.96 5.31 45.90 64.00

90 55.15 3.61 46.70 59.90

100 50.78 2.13 44.60 54.70

110 52.42 4.01 44.10 60.50

120 52.60 2.21 47.10 55.20

130 55.30 2.39 49.80 58.40

140 53.49 2.66 49.00 59.30

150 52.58 3.19 45.30 59.00

160 52.42 2.83 44.60 57.00

170 49.67 3.42 42.60 55.50

180 50.57 1.90 46.50 53.90

190 49.22 3.13 43.20 54.30

200 51.98 2.28 46.20 57.20

Table 3 The parametric values of the FANN model

MSE RMSE MAE R2

Training 23.52 4.85 3.46 0.88

Validation 22.66 4.76 3.37 0.89

Test 24.07 4.91 3.54 0.88
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ber of epochs was shown in Fig. 5. In the early stages 
of training (during the first few epochs), it was ob-
served that the training loss (grey curve) was high, 
but the losses were rapidly decreasing. This showed 
that the model was optimizing its parameters early 
on, leading to a decrease. The validation loss (black 
curve), which showed a similar behavior to the train-
ing loss, indicated that the model was fitting to the 
data.

During the first few epochs, both the training loss 
and the validation loss were decreasing rapidly. This 
showed that the model was quickly starting to learn 

and the weights were being optimized. The model was 
showing similar success on both the training data and 
the validation data. After approximately the 10th ep-
och, both the training and validation losses were 
reaching a low level, and the fluctuations were de-
creasing, gradually converging to a certain point This 
shows that the model was entering a stable learning 
process throughout the training. This situation shows 
that the model was having good generalization ability 
and that the training process was progressing effec-
tively. The loss of this model stabilized at a low level, 
and there were no signs of overfitting. Thanks to the 

Fig. 4 Representation of the relationship between distance and 
sound with the measurement and prediction curves

Fig. 5 Model training and validation loss

Fig. 6 Sound attenuation effect of trees in a simulated stand (a) and added trees (b) of sound propagation for 600 m
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early stopping strategy (50 epochs), unnecessary pro-
longed training was prevented. For the model set to 
500 epochs, similar results could have been obtained, 
but the computational intensity was avoided.

Model output provided the sound propagation 
pattern at distances of 600 (Fig. 6), 300, and 150 meters. 
As expected, the sound propagation decreased with 
the increase in distance. It was calculated that the 
sound propagation and intensity in the study area, 
with a canopy density of 65% and a terrain slope of 
35%, could be affected by the surrounding approxi-
mately 14,976 trees. By coincidence, the trees scattered 
across the area attenuate the sound at a distance of 600 
meters. Sound intensity and propagation were not ho-
mogeneous in the study area.

In the study area, the sound intensity propagation 
was diminishing at a distance of 300 m for 3744 trees 
randomly spread across the area (Fig. 7). According to 
the model, sound levels between 28 and 60 dB were 
observed, showing different distributions between 0 
m and 300 m. It was calculated that the sound level 
could range between 36 dB and 46 dB at a distance of 
approximately 300 m. Due to the sound attenuation 
effect of the trees, it was observed that the sound level 
propagation was not spreading systematically into the 
environment.

In the study area, 936 trees randomly spread across 
the area were attenuating sound at different intensities 
at a distance of 150 m (Fig. 8). At a distance of 150 m 
from the chainsaw, the sound level was audible down 

Fig. 7 Sound attenuation effect of trees in a simulated stand (a) and added trees (b) of sound propagation for 300 m

Fig. 8 Sound attenuation effect of trees in a simulated stand (a) and added trees (b) of sound propagation for 150 m
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to a minimum of 52 dB, while due to the effect of the 
trees, it was calculated that the sound level could drop 
to 42 dB. The sound attenuation effect of the trees was 
different in sound propagation depending on the clus-
tered tree groups. Rather than behaving like a sound 
pitch, it was observed that the sound was reflected.

In the study area, 104 trees randomly spread across 
the area were attenuating sound at different intensities 
at a distance of 150 m (Fig. 9). It was observed that the 
sound was attenuated as desired in the locations 
where the trees were situated in the model. It was cal-
culated that the sound intensity was above 69 dB up 
to a distance of approximately 20 m from the sound 
source. Additionally, due to the effect of the trees 
within a 20 m radius, it was estimated that the high 
sound level would drop to approximately 60 dB.

3.3 Limitations
In this study, the FANN-based sound propagation 

prediction model was successfully generalized, and 
the model was created. This study was important as it 
could be carried out in more detail in the future and 
provide ideas for researchers. However, in this study, 
the measurements were taken in a stand with a certain 
canopy density in the model, with the slope facing 
upwards. The measurements were conducted only 
during the summer season. These measurement data 
were conditionally generalized based on the specific 
environmental characteristics of the measurement 
area to estimate sound attenuation values under com-
parable conditions. The measurements were taken on 
the slope above the noise source. It is necessary to 
make the model more reliable to topography by ob-

taining measurements in different slope and elevation 
classes. Additionally, model development did not con-
sider wind, humidity, temperature and stand charac-
teristics (such as tree species, tree diameter, density, 
etc.). The inability to perform synchronized measure-
ments by using multiple measurement devices simul-
taneously, instead of just one sound measurement 
device, was another limitation of this study.

4. Discussion
According to the field measurement results, the 

chainsaw sound could range from an average of 52 dB 
to 91 dB between 1 m and 200 m (Table 2). Due to the 
high-level sound exposure at close distances to the 
chainsaw, the worker could experience permanent 
hearing damage without hearing protection. Accord-
ing to the value produced by the FANN model, it was 
estimated that the sound level would drop below 80 
dB after approximately 8 m. If the chainsaw operator 
works without using personal protective equipment, 
there is a possibility of experiencing health problems 
due to exposure to high sound levels. Depending on 
the duration of exposure for individuals within this 
distance, the likelihood of experiencing an increase in 
blood pressure, acceleration of heartbeat and respira-
tion, and headache is very high (Tunay and caMele-
mez 2008).

Additionally, according to the FANN-based sound 
propagation model, it was estimated that sound could 
spread between 40 dB and 90 dB at distances from 0 
to 440 m. According to the model, a high acoustic 
sound level was observed at a distance of 10 m from 

Fig. 9 Sound attenuation effect of trees in a simulated stand (a) and added trees (b) of sound propagation for 50 m
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the chainsaw. Staněk et al. (2023) stated that the high-
est possible acoustic sound around the area where the 
operator works with the Stihl MS362 chainsaw occurs 
up to a distance of 21 m. Indeed, at these distances, the 
reactions of wildlife and the negative effects on wild-
life can be observed in a short period of time. In areas 
exposed to short-term high levels of sound, a notice-
able decrease in bird species diversity can be observed 
(Shannon et al. 2016, Iglesias-Merchan et al. 2019). Not 
only birds but also other terrestarial animals can be 
affected due to chainsaw operations. For example, a 
study has shown that chainsaw use disrupts the gib-
bons’ natural behavior, increasing their risk to sur-
vival, indicating that noise pollution should be taken 
into account in conservation and forest management 
(McGrath et al. 2024).

The sound propagation predictions observed at a 
distance of 400–500 m in the study area are similar to 
the sound levels produced by a group engaged in rec-
reational activities. Therefore, due to the presence of 
mammalian wildlife (deer, foxes, and black bears) in 
the area, they will exhibit fleeing and vigilance behav-
iors due to their height (Zeller et al. 2024). While bird 
mobbing calls can normally be heard up to 150–200 m, 
when mixed with chainsaw sound at a distance of 200 
m (with a sound level of approximately 58 dB), they 
can only be heard within a radius of 50–100 m. The 
sound from the production machinery used in for-
estry operations will affect the birds' mobbing re-
sponse (Tilgar et al. 2022). In short, for sound-depen-
dent wildlife species involved in risk detection, spatial 
awareness, and territory defense, human-caused 
sound can disturb them or affect their ability to re-
spond to biologically significant sounds, such as those 
produced by predators or territory invaders (Chan et 
al. 2010). In this study, according to the model sound 
propagation predictions up to a distance of 1000 m, it 

was found that the sound could decrease to approxi-
mately ≈5 dB. Indeed, in sound propagation studies 
conducted within the scope of roadside effects, evalu-
ations are made with a range that does not exceed 1000 
m (Reijnen et al. 1997). In this study, it was found that 
the chainsaw working area could affect wildlife at dis-
tances up to 400 m. McClure et al. (2013) assess that 
traffic noise can have a direct effect on birds availabil-
ity ratio up to at least 500 m away. The sound propaga-
tion model developed was helpful in determining the 
impact area. However, it should be considered that the 
sound was directed upward from the center of the 
sound source (Table 4). Besides the effect of sound on 
wildlife depending on distance, it could also vary de-
pending on the characteristics of the habitat. Depend-
ing on the frequency composition and exposure dura-
tion change, different effects may be observed at 
varying distances for different wildlife species (Francis 
and Barber 2013). An assessment must be made for the 
existence of any impact during logging activities that 
could affect a species in a protected area (EPC 1992).

In this study, at distances between 400 and 650 m, 
the sound intensity was between 30 dB and 40 dB, 
while for distances of 600 m and beyond, the sound 
level was calculated to be <30 dB due to the sound at-
tenuation effect of the trees. According to the model, 
the calculated sound level at a distance of 400 m in a 
windy environment was found to be at the level of a 
person whispering from 150 cm to 5 m away, or the 
rustling sound of leaves swaying in the wind (Berger 
et al. 2016). The chainsaw sound is at a level that can-
not be heard in a natural habitat, such as a forested 
area, after 600 m.

In this study, it was understood that wildlife in ar-
eas with similar characteristics and minimum sound 
attenuation could respond to sound at distances of 
450–500 m. Studies could be carried out to reduce the 

Table 4 Comparison of previous studies on chainsaw propagation distances

Study Model Max. Sound Level (dB) Brand/Description

This study FANN

≈57 Chainsaw sound level at 50 m

≈40–47 Sound level due to attenuation by trees at 50 m

≈50 Chainsaw sound level at 200 m

≈40 Sound level due to attenuation by trees at 200 m

Potočnik et al. (2010) LZeq(dB) = 109.765 – 28.016 * log(distance)
≈62 Stihl MS 460 / Chainsaw sound level at 50 m

≈45 Chainsaw sound level at 200 m

Staněk et al. (2023) Direct measurement 80 Stihl MS 362 / Chainsaw sound level at 21 m

Anuar et al. (2024) dBA = 93.946 – 0.91 *(distance)

≈84–90 Not available / Chainsaw sound level at 5 m

≈72–77 Chainsaw sound level at 20 m

≈48 Chainsaw sound level at 50 m



S. Gülci et al.	 Evaluating and Modeling of Chainsaw Noise Propagation by Using Artificial Neural Network ... (1–XX)

12	 Croat. j. for. eng. 47(2026)1

negative impacts on wildlife and worker health. In 
particular, regular maintenance of chainsaws is impor-
tant. Muffler damage, improper bar oil, and dull chain 
can all affect noise levels. Dull chains also increase the 
duration of the noise since productivity is reduced. 
The use of electric chainsaws could be encouraged.

5. Conclusion
This noise model provides useful data for under-

standing how sound propagates in an environment 
with trees and where it concentrates. It was estimated 
that the chainsaw sound could affect wildlife up to 400 
m and that the sound would propagate up to a dis-
tance of 600 m. Considering the attenuation effect of 
forest trees in the study area, the rate of impact on wild 
animals will decrease after 200 m from the source of 
the sound. It was determined that the chainsaw sound 
could be below 30 dB after 600 meters. This study 
showed the need to establish a baseline propagation 
pattern under controlled variables which can serve as 
a reference for future multi-directional or seasonally 
varied measurements. Modeling from forested areas 
with different attributes using ANN has the potential 
to contribute to sustainable timber production efforts. 
Therefore, for more detailed analyses, it is necessary 
to consider the acoustic characteristics of the environ-
ment (e.g., reflections, absorption) in the measure-
ments. The results can be classified based on time or 
spatially, and compared with specific standard values.
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