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CAN Bus Joystick Data to Assess Operator
Workload: A Forwarder Loading Case Study

Abstract

Modern forest harvesting machinery generate an abundance of underutilised data in their
control systems. The Controller Area Network (CAN) bus data stream offers the opportunity
to investigate the operation of the machinery in detail while in real-world harvesting scenar-
ios. This study uses CAN data to assess a component of operator workload in forwarder op-
erations, by introducing a method to interpret forwarder joystick movements. The data was
captured in a clearfell logging operation case study in Canterbury, New Zealand. The joystick
data was then analysed to determine the time and number of operator input movements per
load cycle (»grab«) totalling 418 grabs. This, combined with video analysis, identified inde-
pendent variables that describe the grab cycle such as time of day, number of logs per grab, log
grade, and the activities of »pencilling« (vertical drop of logs in grab to align large ends) and
»dropping« (releasing logs from the grab before loading). Factors that significantly affected
the operators’ time taken to complete the grab and the number of required joystick movements
included number of logs, pencilling and dropping. For example, the average load cycle was
18-seconds for four logs, and this increased by 6.1-seconds and 14.4-seconds per grab when
pencilling or dropping, respectively. Average total joystick movements were ~108 per grab.
This case study demonstrated that CAN bus data can be used to improve our understanding
of the operation of harvesting equipment such as forwarders. An example use of the result is
to share and compare this with the harvester operator (who crosscuts and sets out the logs for
forwarder-collection) as the need for pencilling and dropping is a consequence of misalignment
or debris caught in the piles. The method used also presents an opportunity for human factors
research, particularly in operator fatigue management and training through the measurement
of joystick movements with a genuine possibility of real-time performance feedback.
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1. Introduction

In New Zealand, forwarders are commonly used
in ground-based timber harvesting operations, ac-
counting for approximately eight percent of extraction
machines (Visser 2023). They are used in cut-to-length
operations where trees are delimbed, cut into logs at
the stump, and extracted to the landing. This system
offers several advantages by minimising road con-
struction, reducing soil disturbance, and damage to
logs compared to skidding (Proto et al. 2018a, Tiernan
et al. 2004).

There have been numerous time and motion stud-
ies exploring the factors that influence forwarder pro-
ductivity globally. In New Zealand, Proto et al. (2018b)
showed that distance and payload were significant

contributors to productivity. Similarly, a case study in
Ireland showed that extraction direction (uphill or
downhill) also impacts productivity (Tiernan et al.
2004). Furthermore, in Croatia, Stanki¢ et al. (2012)
found that forwarder class, load characteristics, ter-
rain, and stand conditions were contributing factors.
Gagliradi et al. (2020) emphasised these factors as key
contributors to productivity in their study of South
African Plantation forestry. The literature shows a
well-versed understanding of the critical factors affect-
ing the productivity of forwarders; however, these are
mainly focused on the entire forwarder cycle. There is
limited research examining factors within individual
elements of each cycle, understanding that each load
cycle is the sum of a number of loading and unloading
movements.
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As technology advances, research of forestry op-
erations has increasingly transitioned from traditional
time and motion studies to automated data logging
approaches, offering greater accuracy and resolution
when analysing machine and operator performance
in greater detail. For example, Manner (2015) uses
John Deere's TimberLink system to investigate pro-
ductivity per loading grab. The log concentration and
number of assortments in a load were found to sig-
nificantly affect the time taken per grab. Manner et al.
(2016) used TimberLink to examine over 15,000 for-
warder cycles, computing fuel and time consumption.
Suvinen (2006) used Controller Area Network (CAN)
data to assess the fuel consumption related to wheel
chains and bogie tracks on forwarders, providing an
indication of their economic viability during the for-
warders driving cycle elements.

Systems like TimberLink or directly accessing the
machine's CAN bus network allow for more accurate
analyses of forwarding operations. CAN is a serial
communication protocol developed by Bosch in the
mid-1980s and standardised as ISO 11898 (Spencer
and Torres 2022). A message-based communication
protocol connects electronic control units (ECUs) in
harsh environments where electrical noise and other
electromagnetic disturbances may cause communica-
tion failures. It has seen widespread adoption, from
automotive controls to industrial systems and heavy
machinery controls. Forest harvesting machinery is
one of these adopters. Spencer et al. (2020) stated that
tapping into this system for data acquisition unveils
significant opportunities for advancing the knowledge
base within harvesting operations. It allows the ma-
chine inner workings, including engine and hydrau-
lics parameters and joystick movements, to be recorded
in detail.

Modern forestry machines are now extensively
controlled by joysticks, offering ergonomic advan-
tages (Sokolov et al. 2023). CAN bus joystick data
could be used to analyse the operator working pat-
terns, and the effects operating conditions may have
on those behaviours. Current human factors research
in forestry focuses on attaching sensors to the operator
to measure muscle load and air temperature, and us-
ing tools like eye trackers and echocardiogram de-
vices. For example, Skvor et al. (2022) measured the
heart rate and muscle load of timber truck drivers to
assess the effect of different road types on them. They
found that drivers operating on lower-grade roads
experienced higher stresses, with a 21.9% increase in
difficulty on lower-grade roads than on roads of high-
er quality. O'Connor (2023) examined the potential of
using electromyography biofeedback to minimise
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work-related musculoskeletal disorders. The interac-
tive tool developed encouraged operators to learn how
to reduce muscle engagement and relax during their
operational activities. Haggstrom (2015) investigated
felling machine operators' eye movements in cut-to-
length operators. The study found that operators con-
ducted their joystick movements without visual repre-
sentation, meaning they did not need to look at their
joysticks when operating the machine. Instead, the
operator focused on the actions of the harvesting head
and the bucking monitor and aspects of the forest
work site, which provided an overview while allow-
ing them to organise the next cycle of work. These
studies show that technology can effectively measure
the operator patterns of work while also capturing the
operator planning and thought process during the op-
erations.

Utilising joystick data from the CAN bus offers a
non-obtrusive approach to monitoring operational
performance. Sorrento et al. (2011) is one of the earliest
studies investigating operator performance using joy-
stick data. They focused on assessing the joystick con-
trol of powered wheelchair driving tasks using joy-
stick displacement, number of joystick movements, and
direction. This allowed the authors to discern novice
and expert powered wheelchair drivers. Gacem et al.
(2019) expanded on this work to compute the driving
style of wheelchair operators by including joystick ve-
locity and acceleration to capture a more complete
picture of operator actions. They showed that novice
users were able to stabilise their driving style after
learning. Rabreau et al. (2019) build on Sorrento's
work to assess user behaviour during powered wheel-
chair driving tasks, allowing for a driver profile to be
created and performance to be monitored. In turn,
these findings allowed their therapists to provide da-
ta-driven feedback on their patients” progress.

Joystick movement is defined as joystick displace-
ment that exceeds a threshold, commonly 5-10% of the
total joystick movement calculated as the Euclidean dis-
tance (Gacem et al. 2019, Sorrento et al. 2011). Using
the joystick displacement alone is an appropriate
method for simple joystick manoeuvres. However,
other variables are needed to capture the complex joy-
stick manoeuvres in forwarder operation. Laurikkala
et al. (2016) showed that it is possible to predict cogni-
tive and motion skills of forest harvester operators
from joystick inputs. Their simulation game uses joy-
stick movements and positions of the crane and head to
predict an operator skill level based on a Neural Net-
work. These studies show that analysing joystick data
to measure the characteristics of operators in working
conditions is possible, potentially providing an indica-
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tion of operator performance and allowing for data-
based feedback.

Cycle time (loading and unloading logs) is a gross
measure of forwarder operator productivity. Detailed
movements of the joystick could give insights into the
operator style of work and their changes throughout
the workday. Performance (speed and accuracy of
movements) and fatigue (cumulative increase in tired-
ness) are influenced by many factors in the environ-
ment, such as windthrow (Szewczyk et al. 2020). Mod-
ern forestry machines take the heavy physical load
away from the operator but can replace it with mental
workload, as partially automated work can generate
a significant cognitive and psychological load (Heini-
mann 2007, Szewczyk et al. 2020). CAN bus data and
analysis could support measuring this mental work-
load, particularly through analysis of joystick move-
ments. This may allow for real-time feedback to opera-
tors about fatigue levels throughout the day.

The literature shows clear motivation for develop-
ing innovative techniques to deeper understand op-
erator performance during operations, particularly,
using joystick analysis. However, there remains lim-
ited research in applying these techniques in real
working operations. This study aims to build upon
existing joystick analysis techniques to investigate
factors affecting operator performance and work-
load. The study further aims to use CAN bus data to
determine factors affecting the productivity and
utilisation of forwarders during loading operations.
Specifically:

= provide a method for measuring the joystick

movements of forwarder operators during load-
ing cycles and demonstrate the application in a
case study

= using the case study, show factors affecting op-
erator workload as determined by the number
of joystick movements.

2. Materials and Methods
2.1 Site Description and Machine Used

The forwarder (Fig. 1) used for data collection was
a John Deere 1910E (with intelligent boom control); the
specifications are given in Table 1. The forwarder was
working in Balmoral Forest, Canterbury, New Zea-
land, planted in Pinus radiata. The forest terrain is flat,
and the conditions were dry. Data collection took
place from 5 am to 2 pm on the 15" of May 2024, total-
ling 418 individual grabs captured during 15 com-
pleted forwarder load cycles.
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Table 1 John Deere 1910E Forwarder specifications

Specification Value
Load rating 21 tonne
Boom reach 7.2/85m
Engine power 186 kW (249 hp)
Tractive effort 220 kN
Operating weight 21.8 tonne

Fig. 1 John Deere 1910E in Balmoral Forest

2.2 Data Collection

CAN data was collected from the forwarder using
the CANEdge2 data logger connected to the machine
through its diagnostic port using the standard J1939
Type-2 connector. The data was captured at an aver-
age rate of 333 Hz and stored in 50 MB MDF4 format
files, a standard for time series data in the automotive
industry. After the study period, the SD Card was re-
moved, and the files were uploaded to a desktop com-
puter. The raw CAN data was transformed into a
human-readable form (CSV files) using Python 3.10
scripts, the ASAMMDEF library (Hrisca 2024), and the
SAE J1939 DBC file (Database CAN).

To link the CAN data to the operations carried out
by the forwarder, a video of the operation was also
recorded on an Insta360 video camera. The camera
was mounted to the inside of the cab, always facing
the grapple due to the automatically rotating cabin.
The resulting video files were edited and cut into in-
dividual grabs from each loading cycle. A total of 418
grabs were recorded over 15 cycles. The video footage
was then used to determine the unique factors associ-
ated with each grab, including the number of logs and
their grade, whether the logs were dropped, and
whether the pile was pencilled (the operator butts up
the logs during the grab by pressing them into the
ground). The CAN data was then spliced to match the
video footage.
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After reviewing the video footage from each grab,
it was evident that there were three types of starting
positions, depending on the ending position from the
previous grab. The first type was when the operator
moved from one pile to the next. This meant the crane
was stationary, and the starting point was defined as
the first joystick movement other than grapple rotation
or open/close. The second type was when an operator
immediately slewed the boom to the next grab after
dropping the previous one. Due to the limitations of not
having the load cell data, there was no clear point in
the data to show when the logs were dropped. There-
fore, the next grab starting point was when the grapple
trigger was released by the operator after dropping the
load. The final but unusual case was when the opera-
tor started the grab after butting the logs up from the
back of the log bolsters. Here, the video had to be re-
viewed to determine the first movement that occurred
after the butting procedure, which, in most cases, was
the boom slew.

2.3 Data Processing

In total, ten joystick parameters were captured and
decoded from the forwarder's CAN bus network, the
five relevant parameters are shown in Table 2. Fig. 2
shows the inside of the cab of the machine, where joy-
stick] refers to the arm on the left and joystick2 to the
arm on the right. With intelligent boom control, man-
ual control of the squirt/jib boom was unnecessary, so
Joystick1ThetaAxis was omitted from the dataset. The
other four joystick parameters related to the machines
steering and control of the blade were irrelevant to the
analysis and were therefore removed. Taking these
parameters and their associated binary joystick direc-
tion variables, which show what quadrant the joystick
is in, the true values for each joystick were calculated.
For example, Joystick2X Axis Lever Left Negative Posi-
tion Status having a value of 1 indicates that Joystick-
2XAxis is on the left side of the x-axis and in a negative
position. Therefore, it is transformed by multiplying
by negative one to get its true value.

Table 2 Joystick variables used in analysis

Variable Name Description
Joystick1XAxis Controls the slew (left and right) of the boom
dopstens | gt
Joystick1YAxis Controls the outer boom in and out
Joystick2YAxis Controls the inner boom up and down
Joystick2ThetaAxis | Controls the opening and closing of the grapple head
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Fig. 2 Forwarder cabin the with the operator handling joystick1 on
the left and joystick2 on the right

Vector direction used in defining a joystick move-
ment by combining the x and y joystick coordinates as
defining joystick movements based on displacement was
deemed inappropriate. Vector direction was comput-
ed in Python 3.10 using the acrfan2 function, which
accounts for positive and negative values and handles
division by zero (Eq. 1). The angle differences had to
be corrected due to the errors occurring where there
were angle discontinuities near the boundaries [-7, 7].
For the trigger movements (Joystick2 ThetaAxisPosition),
simple state change logic was applied to define cap-
ture, a push and release on the trigger.

e,

0, = arctan

Where:

Ax,and Ay, represent the change in the x and y coor-
dinates between t" and t, respectively

0, direction of the vector (angle) at point .

2.4 Statistical Analysis

Five regression models were developed using Gen-
eralised Least Squares (GLS) to analyse the factors influ-
encing forwarder loading cycles. These models fo-
cused on grab completion time, joystickl, joystick2 and
trigger movements as well as the total number of joystick
movements. GLS was employed to develop the regres-
sion models, as it accounts for heteroscedasticity and
autocorrelation in the residuals, which violate the Or-
dinary Least Squares (OLS) assumptions. The represen-
tative equation for all models is seen in Eq. 2. For each
model, an F-test was performed to evaluate the overall
goodness-of-fit, and the significance of each coefficient
was tested individually using t-tests. A significance
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level of p<0.05 was applied to determine statistically
significant factors, which are represented in the final
model (Eq. 2).

y=PBy+ B xP+p,xD,+ B, xDy+ B, xL+ s xT+ f xN+¢

@)

Where:

y is the dependant variable (completion time, joystick-
1movements, joystick2movements, trigger movements,
and total joystick movements)

P is a pencilling movement, where the operator butts
up the logs during the grab by pressing them into
the ground

D isadropping movement, where the operator initially
grabs the log pile but drops it and releases the
grapple, freeing the logs momentarily. This is done
to either pile logs together or remove slash from
the grab

L represents the log grade of each cycle; refer to Table
3 for their specifications

T refers to the time of day, derived from the cycles and
ranges from one to 15 (5 am to 2 pm)

N denotes the number of logs in the grapple during the
grab

& represents the residuals (assumed to be identical
and independently normally distributed).

Table 4 presents the descriptive statistics of the in-
dependent variables.

Table 3 Log grade specifications

P. Humphrey et al.

3. Results

3.1 Establishing Joystick Movement

The original sampling from the data logger (333
Hz) meant the points were too close together, resulting
in thousands movements for most angle thresholds
(Fig. 3). Therefore, the data had to be resampled to
ensure the number of movements predicted were ap-
propriate, previous joystick studies showing that 100
ms was a common resampling rate for joystick data
(Mavridis et al. 2015, Sorrento et al. 2011). However,
sampling rate and 0 , threshold had to be analysed
simultaneously against the number of joystick move-
ments to ensure accuracy. Nicholls et al. (2024) showed
that an average operator reaction time was 191 ms,
suggesting that an operator can make a maximum of
five deliberate joystick movements per second. An aver-
age grab completion time of ~22 seconds meant that
the total possible number of movements would rea-
sonably be 110.

It was found that 200 ms resampling rate and a
45-degree threshold for 0 , provided the most consis-
tent and accurate movement count, significantly re-
ducing the number of micro-movements that are un-
likely to be deliberate decisions by the operator, or a
result of machine vibrations affecting hand move-
ments. For joystickl and 2 one extra move was added
at the start to account for the first movement. The aver-
age total movement count was 107.8 (Table 4) consis-
tent with the theoretical number of possible move-
ments based on reaction time.

: : Fig. 4 illustrates the different number of significant

Grade | # ofgrabs | SED, cm | Length, m | Maximum knot size, cm movements for joystick2 at different threshold angles

KX 186 10 3.94 No Restriction at a sampling rate of 200 ms. The 25-degree threshold

UA 49 10 2.2-6.0 No Restriction includes too many insignificant movements that are

20 107 20 4.09 10 unlikely to be consciously inputted by the operator. In

V30 2 30 109 12 the ~23 second segment shown it records 57 move-

ments. Whereas at the 70-degree threshold, significant

At o 12 59t > smaller movements are missed — in the same 23 sec-

Table 4 Descriptive statistics of the dataset
fe,soo | #otops | Pl | Do | R | R | omens | movarens

Mean 218 4.1 0.4 0.2 44.2 4.7 21.9 107.8
STD 7.0 2.3 0.5 05 15.8 15.5 10.4 38.7
Minimum 10.7 1.0 0.0 0.0 14.0 12.0 6.0 41.0
25% 16.6 20 0.0 0.0 32.0 30.0 14.0 783
50% 204 4.0 0.0 0.0 415 40.0 20.0 100.0
75% 26.1 6.0 1.0 0.0 52.0 518 28.0 129.8
Maximum 50.6 12.0 20 3.0 97.0 95.0 71.0 253.0

Croat. j. for. eng. 47(2026)1




P. Humphrey et al.

2000 |
‘ QOrginal Sampling (333 Hz)
1750 - ‘

1500

1250 —
l—-_._"\'

1000 \
750 . N S
\

\
—I— Joystick1 I
500

Average number of movements per grab

& — Joystick2
250 T T T
0 20 40 60 80 100
Degrees
160
—$— Joystickt
140 I
i [+ — Joystick2
©
>
3 120
o
Bu]
c
5 \
5 100 = aL
o
= T
| 80 .
[} T
E= -
E m} T
2 T
) B
g 6 - —~n
(]
2 BERERE=NR!
4 -
- 1 .-
Sampled at 100 ms ‘ +
20 T T 1‘ 1
10 20 40 60 80 100
Degrees

CAN Bus Joystick Data to Assess Operator Workload: A Forwarder Loading Case Study (1-XX)

225
T

200

—I— Joystick1
o

Joystick2
175

oL
X

Average number of movements per grab

Sampled at 50 ms
25 T T
0 20 40 60
Degrees
90 o
+Joystick1
80
2 ;
& 3 — Joystick2
o
S 10
2 T
o =)
é 60 T
o o i N
g
5 50 1 o T
B D T
g 40 1 o
: { : 1
E D
s 2
< -
4 u—_g
20 =
Sampled at 200 ms T ==
10 T T 1
10 20 40 60 80 100

Degrees

Fig. 3 Comparison of the number of joystick movements calculated at different angles and resampling methods

onds, only 30 movements are recorded. Hence, an op-
erator movement was defined as a change in angle
greater than 45 degrees — which was 40 movements for
this sample.

3.2 Grab Time and Motion

A grab completion time equation (Eq. 3) showed the
significant factors influencing completion time. The
number of logs, pencilling and dropping were found to be
highly significant factors (p<0.001), as expected, due to
the extra required movements needed to execute a

drop and a pencil. The model shows that for every log
in the grab, total completion time increases by that same
amount. Notably, the time of day had no significant
impact on the completion time. This shows that the op-
erator performs consistently throughout the day.

Completion Time (sec) =13.9 + 6.1 x Pencil + 6.7 x
Drops[1] + 14.4 x Drops[2+] + 1 x Number of Logs ~ (3)
(F=107.3)

Eq. 4 shows the regression model for joystick1move-
ments (crane slew, and in and out) during a grab.
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Similarly to the previous model, pencilling, dropping
and number of logs significantly affect the number of
joysticklmovements per grab (p<0.001). Time of day was
found to increase the number of joysticklmovements by
4.7 from the first cycle to the last.

JoysticlMovements = 25.0 + 0.3 x Time day +

13.1 x Pencil + 14.4 x Drops[1] + 32.6 x Drops[2+] +

12.2 x Number of Logs 4)
(F=86.61)

Eq. 5 shows the regression model for joystick2move-
ments (crane up and down, grapple rotation) during a
grab. Much like the previous two models pencilling,
number of logs and dropping are consistently highly sig-
nificant variables (p<0.001). However, joystick2 is sig-
nificantly affected by the UA log grade, decreasing joy-
stick movements by 3.4.

Joystic2Movements = 24.5 — 3.4 x Log Grade[UA] +

12.7 x Pencil + 14.4 x Drops[1] +26.9 x Drops[2+] +

2.2 x Number of Logs ®)
(F=82.14)

Eq. 6 provides the regression model for trigger
movements (grapple open and close). Again, like all
previous models, pencilling and dropping are highly
significant variables. However, for this model, the
number of logs showed no significance. This makes
sense as the number of trigger movements is unlikely to
change as the number of logs increases, as there are no
extra requirements for the grapple. This is likely the
same for the log grade variable. Time of day also had no
significant impact on the number of trigger movements.

Trigger movements = 16.135 + 9.130 x Pencil +
8.376 x Drops[1] +17.530 x Drops[2+] (6)
(F=30.35)

Eq. 7 shows the regression model for the combined
joystick and trigger movements. As expected, number of
logs, pencilling and dropping are again highly significant
variables increasing the number of movements by ap-
proximately 114 movements. The UA log grade was
also found to be significant reducing the number of
movements by 7.8.

Total Joystic Movements = 65.6 — 7.8 x Log Grade[UA] +
35.1 x Pencil + 37.2 x Drops[1] + 77.2 x Drops[2+] +

4.4 x Number of Logs (7)
(F=87.95)

4. Discussion

The five regression models produced analyse the
completion time and joystick movements during forward-
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er loading grabs, all showing a common trend. Number
of logs, pencilling and dropping are the key factors affect-
ing forwarder loading operations. Pencilling and drop-
ping are often not the result of forwarding operations
but stem from the harvesting process. The results
show that, if the processor leaves the log piles covered
in a slash or not evenly butted up, there is significant
impact on the workload of the forwarder operator in
terms of joystick movements, increasing the grab comple-
tion time by up to 21 seconds and the total number of
movements by ~112. This clearly shows downstream
effects from one part of the harvesting operation to the
next, in this case, from the harvester to the forwarder.
By introducing this type of analysis, operators can see
how their individual activities can affect up and
downstream processes. This leads to self-driven opti-
misation of each activity in the harvesting process,
potentially improving productivity. Here, CAN bus
data can offer accurate and real-time feedback for
crews during live operations, allowing them to make
timely adjustments.

Detailed movements of the joysticks give insights
into the operator style of work and their changes
throughout the workday. In this study, the regression
models showed limited signs of change in operator
performance through the day, only slightly present in
joysticklmovements model. An increase in the number
of joystick movements could be attributed to operator
fatigue, among other things. This could suggest that
loading cycles are not impacted by operator fatigue.
However, this may not be applicable to all operators
as data collection was carried out over a single day and
only one operator. Increasing the study period and
including multiple operators could have yielded more
realistic insights into operator fatigue over the course
of a working day. CAN bus data and introducing a
standardised approach to measure fatigue and perfor-
mance from joystick movements could offer a unique
solution: to provide operators with real-time feedback
on their performance and levels of fatigue. This would
allow them to adjust in real-time without having to
rely on feedback from others at a later stage. Combin-
ing these methods and current technologies used in
human factors research previously discussed could
potentially enhance our understanding of operator-
machine interaction.

In Eq. 5 and 7, the UA log grade (Pulp) was shown
to reduce the number of joystick2 and total joystick
movements by 3.4 and 7.8, respectively. Referring to
Table 3, KX and UA are both pulp logs with similar
diameter and knot restrictions. However, UA is the
only grade that has a length range. The equations
show that having a log grade with a range of lengths
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can reduce operator’s workload by up to about seven
percent in terms of joystick movements. However, UA
was found to have no significant effect on the grab
completion time. A larger sample size is needed to come
to a definitive conclusion as in this study there were
only 49 instances of UA log grabs, although it does
show that there is potential for a reduction in joystick
movements by introducing log grades with a length
range.

This study shows that introducing CAN bus data
into analyses rather than relying on traditional time
and motion studies offers a more accurate and com-
prehensive dataset. Using the data from the CAN bus,
highly accurate grab completion times were captured at
a rate of 333 Hz. This, combined with the additional
information on Joystick movements, allows for a more
in-depth analysis than previous studies. This study is
a pilot for future work into forestry operator inputs in
controlling harvesting machinery. It provides a bench-
mark on how bus data can be collected, processed, and
analysed to determine the effects of environmental
and working conditions on forest harvesting opera-
tors. Future studies should focus on introducing algo-
rithms to accurately detect grabs within a loading
cycle like that seen in Bae et al. (2019), who imple-
mented it on excavator activities. This is because the
current manual method is time- and labour-intensive
and has potential errors. Implementing grab identifi-
cation allows for larger sample sizes in future studies
and real-time feedback to the operator. This would
allow more specific answers around the effects of log
grade, performance, and harvesting machinery shown
in this study. There would also be the opportunity to
fine-tune how an operator's movement is defined.
There is little previous research on defining forestry
machinery joystick operator movements, so this study
introduced a method based on an extension of work
done in health research. Though the authors believe
this method is relatively accurate, it has limitations.
For instance, the arctan method relies on changes in
angle, but an operator may continue along the same
path while accelerating or decelerating. Defining this
and other attributes may be needed to capture the en-
tire movement profile and count.

5. Conclusions

Capturing CAN bus data from forest harvesting
machines introduces the opportunity for more in-
depth analysis of harvesting operations compared to
traditional time and motion studies. The joystick in-
puts and completion time for each grab in a loading
cycle of John Deere 1910E were analysed to determine

P. Humphrey et al.

if other environmental impacts not considered in pre-
vious studies influenced forwarder performance. Pen-
cilling, dropping, and number of logs significantly affect
efficiency and operator input in loading grabs. Inter-
estingly, time of day had little effect on the operator
performance.

The data and analysis in this study present a clear
implementation for CAN bus data in monitoring op-
erator performance and potentially enhancing opera-
tor training. The methodology provided should help
other researchers investigate similar effects in their
forwarding operations or adapt it to suit other ma-
chines in harvesting operations. With advances in ma-
chine learning and artificial intelligence, it may also be
possible to introduce this methodology on a large scale
and in real-time.
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