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CAN Bus Joystick Data to Assess Operator 

Workload: A Forwarder Loading Case Study
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Abstract

Modern forest harvesting machinery generate an abundance of underutilised data in their 
control systems. The Controller Area Network (CAN) bus data stream offers the opportunity 
to investigate the operation of the machinery in detail while in real-world harvesting scenar-
ios. This study uses CAN data to assess a component of operator workload in forwarder op-
erations, by introducing a method to interpret forwarder joystick movements. The data was 
captured in a clearfell logging operation case study in Canterbury, New Zealand. The joystick 
data was then analysed to determine the time and number of operator input movements per 
load cycle (»grab«) totalling 418 grabs. This, combined with video analysis, identified inde-
pendent variables that describe the grab cycle such as time of day, number of logs per grab, log 
grade, and the activities of »pencilling« (vertical drop of logs in grab to align large ends) and 
»dropping« (releasing logs from the grab before loading). Factors that significantly affected 
the operators' time taken to complete the grab and the number of required joystick movements 
included number of logs, pencilling and dropping. For example, the average load cycle was 
18-seconds for four logs, and this increased by 6.1-seconds and 14.4-seconds per grab when 
pencilling or dropping, respectively. Average total joystick movements were ~108 per grab. 
This case study demonstrated that CAN bus data can be used to improve our understanding 
of the operation of harvesting equipment such as forwarders. An example use of the result is 
to share and compare this with the harvester operator (who crosscuts and sets out the logs for 
forwarder-collection) as the need for pencilling and dropping is a consequence of misalignment 
or debris caught in the piles. The method used also presents an opportunity for human factors 
research, particularly in operator fatigue management and training through the measurement 
of joystick movements with a genuine possibility of real-time performance feedback.
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1. Introduction
In New Zealand, forwarders are commonly used 

in ground-based timber harvesting operations, ac-
counting for approximately eight percent of extraction 
machines (Visser 2023). They are used in cut-to-length 
operations where trees are delimbed, cut into logs at 
the stump, and extracted to the landing. This system 
offers several advantages by minimising road con-
struction, reducing soil disturbance, and damage to 
logs compared to skidding (Proto et al. 2018a, Tiernan 
et al. 2004).

There have been numerous time and motion stud-
ies exploring the factors that influence forwarder pro-
ductivity globally. In New Zealand, Proto et al. (2018b) 
showed that distance and payload were significant 

contributors to productivity. Similarly, a case study in 
Ireland showed that extraction direction (uphill or 
downhill) also impacts productivity (Tiernan et al. 
2004). Furthermore, in Croatia, Stankić et al. (2012) 
found that forwarder class, load characteristics, ter-
rain, and stand conditions were contributing factors. 
Gagliradi et al. (2020) emphasised these factors as key 
contributors to productivity in their study of South 
African Plantation forestry. The literature shows a 
well-versed understanding of the critical factors affect-
ing the productivity of forwarders; however, these are 
mainly focused on the entire forwarder cycle. There is 
limited research examining factors within individual 
elements of each cycle, understanding that each load 
cycle is the sum of a number of loading and unloading 
movements.
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As technology advances, research of forestry op-
erations has increasingly transitioned from traditional 
time and motion studies to automated data logging 
approaches, offering greater accuracy and resolution 
when analysing machine and operator performance 
in greater detail. For example, Manner (2015) uses 
John Deere's TimberLink system to investigate pro-
ductivity per loading grab. The log concentration and 
number of assortments in a load were found to sig-
nificantly affect the time taken per grab. Manner et al. 
(2016) used TimberLink to examine over 15,000 for-
warder cycles, computing fuel and time consumption. 
Suvinen (2006) used Controller Area Network (CAN) 
data to assess the fuel consumption related to wheel 
chains and bogie tracks on forwarders, providing an 
indication of their economic viability during the for-
warders driving cycle elements.

Systems like TimberLink or directly accessing the 
machine's CAN bus network allow for more accurate 
analyses of forwarding operations. CAN is a serial 
communication protocol developed by Bosch in the 
mid-1980s and standardised as ISO 11898 (Spencer 
and Torres 2022). A message-based communication 
protocol connects electronic control units (ECUs) in 
harsh environments where electrical noise and other 
electromagnetic disturbances may cause communica-
tion failures. It has seen widespread adoption, from 
automotive controls to industrial systems and heavy 
machinery controls. Forest harvesting machinery is 
one of these adopters. Spencer et al. (2020) stated that 
tapping into this system for data acquisition unveils 
significant opportunities for advancing the knowledge 
base within harvesting operations. It allows the ma-
chine inner workings, including engine and hydrau-
lics parameters and joystick movements, to be recorded 
in detail.

Modern forestry machines are now extensively 
controlled by joysticks, offering ergonomic advan-
tages (Sokolov et al. 2023). CAN bus joystick data 
could be used to analyse the operator working pat-
terns, and the effects operating conditions may have 
on those behaviours. Current human factors research 
in forestry focuses on attaching sensors to the operator 
to measure muscle load and air temperature, and us-
ing tools like eye trackers and echocardiogram de-
vices. For example, Škvor et al. (2022) measured the 
heart rate and muscle load of timber truck drivers to 
assess the effect of different road types on them. They 
found that drivers operating on lower-grade roads 
experienced higher stresses, with a 21.9% increase in 
difficulty on lower-grade roads than on roads of high-
er quality. O'Connor (2023) examined the potential of 
using electromyography biofeedback to minimise 

work-related musculoskeletal disorders. The interac-
tive tool developed encouraged operators to learn how 
to reduce muscle engagement and relax during their 
operational activities. Häggström (2015) investigated 
felling machine operators' eye movements in cut-to-
length operators. The study found that operators con-
ducted their joystick movements without visual repre-
sentation, meaning they did not need to look at their 
joysticks when operating the machine. Instead, the 
operator focused on the actions of the harvesting head 
and the bucking monitor and aspects of the forest 
work site, which provided an overview while allow-
ing them to organise the next cycle of work. These 
studies show that technology can effectively measure 
the operator patterns of work while also capturing the 
operator planning and thought process during the op-
erations.

Utilising joystick data from the CAN bus offers a 
non-obtrusive approach to monitoring operational 
performance. Sorrento et al. (2011) is one of the earliest 
studies investigating operator performance using joy-
stick data. They focused on assessing the joystick con-
trol of powered wheelchair driving tasks using joy-
stick displacement, number of joystick movements, and 
direction. This allowed the authors to discern novice 
and expert powered wheelchair drivers. Gacem et al. 
(2019) expanded on this work to compute the driving 
style of wheelchair operators by including joystick ve-
locity and acceleration to capture a more complete 
picture of operator actions. They showed that novice 
users were able to stabilise their driving style after 
learning. Rabreau et al. (2019) build on Sorrento's 
work to assess user behaviour during powered wheel-
chair driving tasks, allowing for a driver profile to be 
created and performance to be monitored. In turn, 
these findings allowed their therapists to provide da-
ta-driven feedback on their patients’ progress.

Joystick movement is defined as joystick displace-
ment that exceeds a threshold, commonly 5–10% of the 
total joystick movement calculated as the Euclidean dis-
tance (Gacem et al. 2019, Sorrento et al. 2011). Using 
the joystick displacement alone is an appropriate 
method for simple joystick manoeuvres. However, 
other variables are needed to capture the complex joy-
stick manoeuvres in forwarder operation. Laurikkala 
et al. (2016) showed that it is possible to predict cogni-
tive and motion skills of forest harvester operators 
from joystick inputs. Their simulation game uses joy-
stick movements and positions of the crane and head to 
predict an operator skill level based on a Neural Net-
work. These studies show that analysing joystick data 
to measure the characteristics of operators in working 
conditions is possible, potentially providing an indica-
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tion of operator performance and allowing for data-
based feedback.

Cycle time (loading and unloading logs) is a gross 
measure of forwarder operator productivity. Detailed 
movements of the joystick could give insights into the 
operator style of work and their changes throughout 
the workday. Performance (speed and accuracy of 
movements) and fatigue (cumulative increase in tired-
ness) are influenced by many factors in the environ-
ment, such as windthrow (Szewczyk et al. 2020). Mod-
ern forestry machines take the heavy physical load 
away from the operator but can replace it with mental 
workload, as partially automated work can generate 
a significant cognitive and psychological load (Heini-
mann 2007, Szewczyk et al. 2020). CAN bus data and 
analysis could support measuring this mental work-
load, particularly through analysis of joystick move-
ments. This may allow for real-time feedback to opera-
tors about fatigue levels throughout the day.

The literature shows clear motivation for develop-
ing innovative techniques to deeper understand op-
erator performance during operations, particularly, 
using joystick analysis. However, there remains lim-
ited research in applying these techniques in real 
working operations. This study aims to build upon 
existing joystick analysis techniques to investigate 
factors affecting operator performance and work-
load. The study further aims to use CAN bus data to 
determine factors affecting the productivity and 
utilisation of forwarders during loading operations. 
Specifically:

Þ �provide a method for measuring the joystick 
movements of forwarder operators during load-
ing cycles and demonstrate the application in a 
case study

Þ �using the case study, show factors affecting op-
erator workload as determined by the number 
of joystick movements.

2. Materials and Methods

2.1 Site Description and Machine Used
The forwarder (Fig. 1) used for data collection was 

a John Deere 1910E (with intelligent boom control); the 
specifications are given in Table 1. The forwarder was 
working in Balmoral Forest, Canterbury, New Zea-
land, planted in Pinus radiata. The forest terrain is flat, 
and the conditions were dry. Data collection took 
place from 5 am to 2 pm on the 15th of May 2024, total-
ling 418 individual grabs captured during 15 com-
pleted forwarder load cycles.

2.2 Data Collection
CAN data was collected from the forwarder using 

the CANEdge2 data logger connected to the machine 
through its diagnostic port using the standard J1939 
Type-2 connector. The data was captured at an aver-
age rate of 333 Hz and stored in 50 MB MDF4 format 
files, a standard for time series data in the automotive 
industry. After the study period, the SD Card was re-
moved, and the files were uploaded to a desktop com-
puter. The raw CAN data was transformed into a 
human-readable form (CSV files) using Python 3.10 
scripts, the ASAMMDF library (Hrisca 2024), and the 
SAE J1939 DBC file (Database CAN).

To link the CAN data to the operations carried out 
by the forwarder, a video of the operation was also 
recorded on an Insta360 video camera. The camera 
was mounted to the inside of the cab, always facing 
the grapple due to the automatically rotating cabin. 
The resulting video files were edited and cut into in-
dividual grabs from each loading cycle. A total of 418 
grabs were recorded over 15 cycles. The video footage 
was then used to determine the unique factors associ-
ated with each grab, including the number of logs and 
their grade, whether the logs were dropped, and 
whether the pile was pencilled (the operator butts up 
the logs during the grab by pressing them into the 
ground). The CAN data was then spliced to match the 
video footage.

Table 1 John Deere 1910E Forwarder specifications

Specification Value

Load rating 21 tonne

Boom reach 7.2 / 8.5 m

Engine power 186 kW (249 hp)

Tractive effort 220 kN

Operating weight 21.8 tonne

Fig. 1 John Deere 1910E in Balmoral Forest
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After reviewing the video footage from each grab, 
it was evident that there were three types of starting 
positions, depending on the ending position from the 
previous grab. The first type was when the operator 
moved from one pile to the next. This meant the crane 
was stationary, and the starting point was defined as 
the first joystick movement other than grapple rotation 
or open/close. The second type was when an operator 
immediately slewed the boom to the next grab after 
dropping the previous one. Due to the limitations of not 
having the load cell data, there was no clear point in 
the data to show when the logs were dropped. There-
fore, the next grab starting point was when the grapple 
trigger was released by the operator after dropping the 
load. The final but unusual case was when the opera-
tor started the grab after butting the logs up from the 
back of the log bolsters. Here, the video had to be re-
viewed to determine the first movement that occurred 
after the butting procedure, which, in most cases, was 
the boom slew.

2.3 Data Processing
In total, ten joystick parameters were captured and 

decoded from the forwarder's CAN bus network, the 
five relevant parameters are shown in Table 2. Fig. 2 
shows the inside of the cab of the machine, where joy-
stick1 refers to the arm on the left and joystick2 to the 
arm on the right. With intelligent boom control, man-
ual control of the squirt/jib boom was unnecessary, so 
Joystick1ThetaAxis was omitted from the dataset. The 
other four joystick parameters related to the machines 
steering and control of the blade were irrelevant to the 
analysis and were therefore removed. Taking these 
parameters and their associated binary joystick direc-
tion variables, which show what quadrant the joystick 
is in, the true values for each joystick were calculated. 
For example, Joystick2XAxis Lever Left Negative Posi-
tion Status having a value of 1 indicates that Joystick-
2XAxis is on the left side of the x-axis and in a negative 
position. Therefore, it is transformed by multiplying 
by negative one to get its true value.

Vector direction used in defining a joystick move-
ment by combining the x and y joystick coordinates as 
defining joystick movements based on displacement was 
deemed inappropriate. Vector direction was comput-
ed in Python 3.10 using the acrtan2 function, which 
accounts for positive and negative values and handles 
division by zero (Eq. 1). The angle differences had to 
be corrected due to the errors occurring where there 
were angle discontinuities near the boundaries [-π, π]. 
For the trigger movements (Joystick2ThetaAxisPosition), 
simple state change logic was applied to define cap-
ture, a push and release on the trigger.
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Where:
∆xt and ∆yt  �represent the change in the x and y coor-

dinates between t-1 and t, respectively
θt                   direction of the vector (angle) at point t.

2.4 Statistical Analysis
Five regression models were developed using Gen-

eralised Least Squares (GLS) to analyse the factors influ-
encing forwarder loading cycles. These models fo-
cused on grab completion time, joystick1, joystick2 and 
trigger movements as well as the total number of joystick 
movements. GLS was employed to develop the regres-
sion models, as it accounts for heteroscedasticity and 
autocorrelation in the residuals, which violate the Or-
dinary Least Squares (OLS) assumptions. The represen-
tative equation for all models is seen in Eq. 2. For each 
model, an F-test was performed to evaluate the overall 
goodness-of-fit, and the significance of each coefficient 
was tested individually using t-tests. A significance 

Table 2 Joystick variables used in analysis

Variable Name Description

Joystick1XAxis Controls the slew (left and right) of the boom

Joystick2XAxis
Controls the rotation (clockwise and counter 
clockwise) of the grapple head

Joystick1YAxis Controls the outer boom in and out

Joystick2YAxis Controls the inner boom up and down

Joystick2ThetaAxis Controls the opening and closing of the grapple head

Fig. 2 Forwarder cabin the with the operator handling joystick1 on 
the left and joystick2 on the right
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level of p<0.05 was applied to determine statistically 
significant factors, which are represented in the final 
model (Eq. 2).

0 1 2 1 3 2 4 5 6y P D D L T Nβ β β β β β β ε= + × + × + × + × + × + × +  
			   (2)
Where:
y	� is the dependant variable (completion time, joystick-

1movements, joystick2movements, trigger movements, 
and total joystick movements)

P	� is a pencilling movement, where the operator butts 
up the logs during the grab by pressing them into 
the ground

D	� is a dropping movement, where the operator initially 
grabs the log pile but drops it and releases the 
grapple, freeing the logs momentarily. This is done 
to either pile logs together or remove slash from 
the grab

L	� represents the log grade of each cycle; refer to Table 
3 for their specifications

T	� refers to the time of day, derived from the cycles and 
ranges from one to 15 (5 am to 2 pm)

N	� denotes the number of logs in the grapple during the 
grab

e	� represents the residuals (assumed to be identical 
and independently normally distributed).

Table 4 presents the descriptive statistics of the in-
dependent variables.

3. Results

3.1 Establishing Joystick Movement
The original sampling from the data logger (333 

Hz) meant the points were too close together, resulting 
in thousands movements for most angle thresholds 
(Fig. 3). Therefore, the data had to be resampled to 
ensure the number of movements predicted were ap-
propriate, previous joystick studies showing that 100 
ms was a common resampling rate for joystick data 
(Mavridis et al. 2015, Sorrento et al. 2011). However, 
sampling rate and θ_t threshold had to be analysed 
simultaneously against the number of joystick move-
ments to ensure accuracy. Nicholls et al. (2024) showed 
that an average operator reaction time was 191 ms, 
suggesting that an operator can make a maximum of 
five deliberate joystick movements per second. An aver-
age grab completion time of ~22 seconds meant that 
the total possible number of movements would rea-
sonably be 110.

It was found that 200 ms resampling rate and a 
45-degree threshold for θ_t provided the most consis-
tent and accurate movement count, significantly re-
ducing the number of micro-movements that are un-
likely to be deliberate decisions by the operator, or a 
result of machine vibrations affecting hand move-
ments. For joystick1 and 2 one extra move was added 
at the start to account for the first movement. The aver-
age total movement count was 107.8 (Table 4) consis-
tent with the theoretical number of possible move-
ments based on reaction time.

Fig. 4 illustrates the different number of significant 
movements for joystick2 at different threshold angles 
at a sampling rate of 200 ms. The 25-degree threshold 
includes too many insignificant movements that are 
unlikely to be consciously inputted by the operator. In 
the ~23 second segment shown it records 57 move-
ments. Whereas at the 70-degree threshold, significant 
smaller movements are missed – in the same 23 sec-

Table 4 Descriptive statistics of the dataset

Time, sec # of logs Pencil Drops
Joystick1 

movements
Joystick2 

movements
Trigger 

movements
Total 

movements

Mean 21.8 4.1 0.4 0.2 44.2 41.7 21.9 107.8

STD 7.0 2.3 0.5 0.5 15.8 15.5 10.4 38.7

Minimum 10.7 1.0 0.0 0.0 14.0 12.0 6.0 41.0

25% 16.6 2.0 0.0 0.0 32.0 30.0 14.0 78.3

50% 20.4 4.0 0.0 0.0 41.5 40.0 20.0 100.0

75% 26.1 6.0 1.0 0.0 52.0 51.8 28.0 129.8

Maximum 50.6 12.0 2.0 3.0 97.0 95.0 71.0 253.0

Table 3 Log grade specifications

Grade # of grabs SED, cm Length, m Maximum knot size, cm

KX 186 10 3.94 No Restriction

UA 49 10 2.2–6.0 No Restriction

M20 107 20 4.09 10

M30 25 30 4.09 12

R11 51 12 5.5+ 5
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onds, only 30 movements are recorded. Hence, an op-
erator movement was defined as a change in angle 
greater than 45 degrees – which was 40 movements for 
this sample.

3.2 Grab Time and Motion
A grab completion time equation (Eq. 3) showed the 

significant factors influencing completion time. The 
number of logs, pencilling and dropping were found to be 
highly significant factors (p<0.001), as expected, due to 
the extra required movements needed to execute a 

drop and a pencil. The model shows that for every log 
in the grab, total completion time increases by that same 
amount. Notably, the time of day had no significant 
impact on the completion time. This shows that the op-
erator performs consistently throughout the day.

Completion Time (sec) = 13.9 + 6.1 × Pencil + 6.7 × 
Drops[1] + 14.4 × Drops[2+] + 1 × Number of Logs 	 (3) 
(F=107.3)

Eq. 4 shows the regression model for joystick1move-
ments (crane slew, and in and out) during a grab. 

Fig. 3 Comparison of the number of joystick movements calculated at different angles and resampling methods
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Fig. 4 Significant movement detection at different degree thresholds



P. Humphrey et al.	 CAN Bus Joystick Data to Assess Operator Workload: A Forwarder Loading Case Study (1–XX)

8	 Croat. j. for. eng. 47(2026)1

Similarly to the previous model, pencilling, dropping 
and number of logs significantly affect the number of 
joystick1movements per grab (p<0.001). Time of day was 
found to increase the number of joystick1movements by 
4.7 from the first cycle to the last.

Joystic1Movements = 25.0 + 0.3 × Time day +  
13.1 × Pencil + 14.4 × Drops[1] + 32.6 × Drops[2+] +  
12.2 × Number of Logs			   (4) 
(F=86.61)

Eq. 5 shows the regression model for joystick2move-
ments (crane up and down, grapple rotation) during a 
grab. Much like the previous two models pencilling, 
number of logs and dropping are consistently highly sig-
nificant variables (p<0.001). However, joystick2 is sig-
nificantly affected by the UA log grade, decreasing joy-
stick movements by 3.4.

Joystic2Movements = 24.5 – 3.4 × Log Grade[UA] + 
 12.7 × Pencil + 14.4 × Drops[1] + 26.9 × Drops[2+] +  
2.2 × Number of Logs			   (5) 
(F=82.14)

Eq. 6 provides the regression model for trigger 
movements (grapple open and close). Again, like all 
previous models, pencilling and dropping are highly 
significant variables. However, for this model, the 
number of logs showed no significance. This makes 
sense as the number of trigger movements is unlikely to 
change as the number of logs increases, as there are no 
extra requirements for the grapple. This is likely the 
same for the log grade variable. Time of day also had no 
significant impact on the number of trigger movements.

Trigger movements = 16.135 + 9.130 × Pencil +  
8.376 × Drops[1] + 17.530 × Drops[2+]		  (6) 
(F = 30.35)

Eq. 7 shows the regression model for the combined 
joystick and trigger movements. As expected, number of 
logs, pencilling and dropping are again highly significant 
variables increasing the number of movements by ap-
proximately 114 movements. The UA log grade was 
also found to be significant reducing the number of 
movements by 7.8.

Total Joystic Movements = 65.6 – 7.8 × Log Grade[UA] + 
35.1 × Pencil + 37.2 × Drops[1] + 77.2 × Drops[2+] +  
4.4 × Number of Logs			   (7) 
(F=87.95)

4. Discussion
The five regression models produced analyse the 

completion time and joystick movements during forward-

er loading grabs, all showing a common trend. Number 
of logs, pencilling and dropping are the key factors affect-
ing forwarder loading operations. Pencilling and drop-
ping are often not the result of forwarding operations 
but stem from the harvesting process. The results 
show that, if the processor leaves the log piles covered 
in a slash or not evenly butted up, there is significant 
impact on the workload of the forwarder operator in 
terms of joystick movements, increasing the grab comple-
tion time by up to 21 seconds and the total number of 
movements by ~112. This clearly shows downstream 
effects from one part of the harvesting operation to the 
next, in this case, from the harvester to the forwarder. 
By introducing this type of analysis, operators can see 
how their individual activities can affect up and 
downstream processes. This leads to self-driven opti-
misation of each activity in the harvesting process, 
potentially improving productivity. Here, CAN bus 
data can offer accurate and real-time feedback for 
crews during live operations, allowing them to make 
timely adjustments.

Detailed movements of the joysticks give insights 
into the operator style of work and their changes 
throughout the workday. In this study, the regression 
models showed limited signs of change in operator 
performance through the day, only slightly present in 
joystick1movements model. An increase in the number 
of joystick movements could be attributed to operator 
fatigue, among other things. This could suggest that 
loading cycles are not impacted by operator fatigue. 
However, this may not be applicable to all operators 
as data collection was carried out over a single day and 
only one operator. Increasing the study period and 
including multiple operators could have yielded more 
realistic insights into operator fatigue over the course 
of a working day. CAN bus data and introducing a 
standardised approach to measure fatigue and perfor-
mance from joystick movements could offer a unique 
solution: to provide operators with real-time feedback 
on their performance and levels of fatigue. This would 
allow them to adjust in real-time without having to 
rely on feedback from others at a later stage. Combin-
ing these methods and current technologies used in 
human factors research previously discussed could 
potentially enhance our understanding of operator-
machine interaction.

In Eq. 5 and 7, the UA log grade (Pulp) was shown 
to reduce the number of joystick2 and total joystick 
movements by 3.4 and 7.8, respectively. Referring to 
Table 3, KX and UA are both pulp logs with similar 
diameter and knot restrictions. However, UA is the 
only grade that has a length range. The equations 
show that having a log grade with a range of lengths 
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can reduce operator’s workload by up to about seven 
percent in terms of joystick movements. However, UA 
was found to have no significant effect on the grab 
completion time. A larger sample size is needed to come 
to a definitive conclusion as in this study there were 
only 49 instances of UA log grabs, although it does 
show that there is potential for a reduction in joystick 
movements by introducing log grades with a length 
range.

This study shows that introducing CAN bus data 
into analyses rather than relying on traditional time 
and motion studies offers a more accurate and com-
prehensive dataset. Using the data from the CAN bus, 
highly accurate grab completion times were captured at 
a rate of 333 Hz. This, combined with the additional 
information on Joystick movements, allows for a more 
in-depth analysis than previous studies. This study is 
a pilot for future work into forestry operator inputs in 
controlling harvesting machinery. It provides a bench-
mark on how bus data can be collected, processed, and 
analysed to determine the effects of environmental 
and working conditions on forest harvesting opera-
tors. Future studies should focus on introducing algo-
rithms to accurately detect grabs within a loading 
cycle like that seen in Bae et al. (2019), who imple-
mented it on excavator activities. This is because the 
current manual method is time- and labour-intensive 
and has potential errors. Implementing grab identifi-
cation allows for larger sample sizes in future studies 
and real-time feedback to the operator. This would 
allow more specific answers around the effects of log 
grade, performance, and harvesting machinery shown 
in this study. There would also be the opportunity to 
fine-tune how an operator's movement is defined. 
There is little previous research on defining forestry 
machinery joystick operator movements, so this study 
introduced a method based on an extension of work 
done in health research. Though the authors believe 
this method is relatively accurate, it has limitations. 
For instance, the arctan method relies on changes in 
angle, but an operator may continue along the same 
path while accelerating or decelerating. Defining this 
and other attributes may be needed to capture the en-
tire movement profile and count.

5. Conclusions
Capturing CAN bus data from forest harvesting 

machines introduces the opportunity for more in-
depth analysis of harvesting operations compared to 
traditional time and motion studies. The joystick in-
puts and completion time for each grab in a loading 
cycle of John Deere 1910E were analysed to determine 

if other environmental impacts not considered in pre-
vious studies influenced forwarder performance. Pen-
cilling, dropping, and number of logs significantly affect 
efficiency and operator input in loading grabs. Inter-
estingly, time of day had little effect on the operator 
performance.

The data and analysis in this study present a clear 
implementation for CAN bus data in monitoring op-
erator performance and potentially enhancing opera-
tor training. The methodology provided should help 
other researchers investigate similar effects in their 
forwarding operations or adapt it to suit other ma-
chines in harvesting operations. With advances in ma-
chine learning and artificial intelligence, it may also be 
possible to introduce this methodology on a large scale 
and in real-time.
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