Crojfe

Search

Bettinger Pete, PhD. Prof.

Static Horizontal Positions Determined with a Consumer-Grade GNSS Receiver: One Assessment of the Number of Fixes Necessary

volume: 33, issue: 1

Assessing the Accuracy of Tree Diameter Measurements Collected at a Distance

volume: 36, issue: 1

Evaluating the Accuracy of Remote Dendrometers in Tree Diameter Measurements at Breast Height

volume: 43, issue:

An accurate tree diameter (DBH) measurement is a significant component of forest inventory. This study assessed the reliability of remote dendrometers to measure tree DBH. We compared direct caliper measurements (reference measurements) to the remote measurements collected from a laser caliper and a smartphone at 0.5 m, 1 m, and 1.5 m distances from each tree within three forest types (pine, oak, and poplar forests). In general, all remote dendrometers underestimated the mean diameter compared to direct caliper measurements, regardless of forest types and distances. We observed that the mean deviation of direct caliper measurement and smartphone measurement at 1.5 m within a pine forest and oak forest were the lowest (0.3 cm and 0.36 cm, respectively). The deviations between direct caliper measurements and smartphone measurements at a 0.5 m distance, across forest types, were noticeably larger compared to others. An ANOVA test was used to determine whether significant deviations existed between caliper measurements and remote measurements at a specific distance, and among three different forest types. We rejected the null hypothesis, which suggested that there were no statistically significant differences (p<0.05) between tree DBH measurements obtained from the direct caliper measurements and indirect measurements (smartphone and laser caliper) captured at a distance. Then, a post-hoc test was performed to examine which set of estimated deviations was different from the reference data. The results suggested that indirect tree DBH measurements using the smartphone app at 1 m and 1.5 m in certain forest types (pine and oak) were not significantly different from direct tree DBH measurements. Also, our test results mostly indicated no significant difference within each forest, except for measurements using the smartphone app at 0.5 m across all forest types when the smartphone measurements were compared to laser caliper measurements. Although forest characteristics and measurement distance may play an important role in remote tree DBH measurement accuracy, the smartphone app may be used as a practical alternative to direct measurement in measuring the DBH of a tree, which may be a positive development for forestry due to the increased use of smartphones and the availability of a free measure app.

Evaluating the Accuracy of Remote Dendrometers in Tree Diameter Measurements at Breast Height

volume: issue, issue:

An accurate tree diameter (DBH) measurement is a significant component of forest inventory. This study assessed the reliability of remote dendrometers to measure tree DBH. We compared direct caliper measurements (reference measurements) to the remote measurements collected from a laser caliper and a smartphone at 0.5 m, 1 m, and 1.5 m distances from each tree within three forest types (pine, oak, and poplar forests). In general, all remote dendrometers underestimated the mean diameter compared to direct caliper measurements, regardless of forest types and distances. We observed that the mean deviation of direct caliper measurement and smartphone measurement at 1.5 m within a pine forest and oak forest were the lowest (0.3 cm and 0.36 cm, respectively). The deviations between direct caliper measurements and smartphone measurements at a 0.5 m distance, across forest types, were noticeably larger compared to others. An ANOVA test was used to determine whether significant deviations existed between caliper measurements and remote measurements at a specific distance, and among three different forest types. We rejected the null hypothesis, which suggested that there were no statistically significant differences (p<0.05) between tree DBH measurements obtained from the direct caliper measurements and indirect measurements (smartphone and laser caliper) captured at a distance. Then, a post-hoc test was performed to examine which set of estimated deviations was different from the reference data. The results suggested that indirect tree DBH measurements using the smartphone app at 1 m and 1.5 m in certain forest types (pine and oak) were not significantly different from direct tree DBH measurements. Also, our test results mostly indicated no significant difference within each forest, except for measurements using the smartphone app at 0.5 m across all forest types when the smartphone measurements were compared to laser caliper measurements. Although forest characteristics and measurement distance may play an important role in remote tree DBH measurement accuracy, the smartphone app may be used as a practical alternative to direct measurement in measuring the DBH of a tree, which may be a positive development for forestry due to the increased use of smartphones and the availability of a free measure app.

Introducing a New Approach in Stand Tending Planning and Thinning Block Designation by Using Mixed Integer Goal Programming

volume: 43, issue:

Long-term management plans have been developed for nearly all of the forests in Turkey. These plans are applied at a sub-district management unit level and may contain guidance for both intermediate yield and final yield harvests. To implement an intermediate yield plan, which involves the scheduling of forest thinnings (stand tending), consideration in Turkey is given to the advantages of working in the same terrain and the same general area each year. Therefore, compartments are often clumped together to create thinning blocks, taking into consideration the thinning priority of the stands, road conditions, site index, age, and proximity of the compartments. Further, when preparing annual budgets and planning to meet the market’s needs, forest enterprises require an even flow of intermediate wood volume each year. In this paper, we introduce a new approach in stand tending planning designed to schedule an equal amount of intermediate wood volume each year and to create thinning blocks by minimizing the distance to pre-defined ramps (landings). We developed both linear and nonlinear goal programming models to minimize both the deviations from a harvest volume (annual intermediate yield allowable cut) target and the deviations from a target value determined for the distances (total and average) of the centroid of each compartment to the hypothetical forest ramps. By using the extended version of Lingo 16, we solved the problem with different weights for the deviations in volume and distance that ranged from 0.0 to 1.0, in 10% intervals, which created 11 scenarios. We carefully analyzed the results of each scenario by taking into consideration the wood volume and distance of compartments to the ramps. The best scenario using the linear model produced a deviation in volume scheduled for the entire decade of 6 m3, while the deviation in total distance between harvest areas and ramps was 59.7 km. Scenario 5, with weights of 0.6 for volume and 0.4 for distance, produced these results, where compartments were closest to one another. The best scenario using the nonlinear model also produced a deviation in volume of 0 m3 and the total average deviation in distance between harvest areas and ramps was 8.7 km. Scenario 3, with weights of 0.8 for volume and 0.2 for distance, produced these results. The approach and models described through this study may be appropriate for further integration into forest management planning processes developed for the planning of Mediterranean forests.

Introducing a New Approach in Stand Tending Planning and Thinning Block Designation by Using Mixed Integer Goal Programming

volume: issue, issue:

Long-term management plans have been developed for nearly all of the forests in Turkey. These plans are applied at a sub-district management unit level and may contain guidance for both intermediate yield and final yield harvests. To implement an intermediate yield plan, which involves the scheduling of forest thinnings (stand tending), consideration in Turkey is given to the advantages of working in the same terrain and the same general area each year. Therefore, compartments are often clumped together to create thinning blocks, taking into consideration the thinning priority of the stands, road conditions, site index, age, and proximity of the compartments. Further, when preparing annual budgets and planning to meet the market’s needs, forest enterprises require an even flow of intermediate wood volume each year. In this paper, we introduce a new approach in stand tending planning designed to schedule an equal amount of intermediate wood volume each year and to create thinning blocks by minimizing the distance to pre-defined ramps (landings). We developed both linear and nonlinear goal programming models to minimize both the deviations from a harvest volume (annual intermediate yield allowable cut) target and the deviations from a target value determined for the distances (total and average) of the centroid of each compartment to the hypothetical forest ramps. By using the extended version of Lingo 16, we solved the problem with different weights for the deviations in volume and distance that ranged from 0.0 to 1.0, in 10% intervals, which created 11 scenarios. We carefully analyzed the results of each scenario by taking into consideration the wood volume and distance of compartments to the ramps. The best scenario using the linear model produced a deviation in volume scheduled for the entire decade of 6 m3, while the deviation in total distance between harvest areas and ramps was 59.7 km. Scenario 5, with weights of 0.6 for volume and 0.4 for distance, produced these results, where compartments were closest to one another. The best scenario using the nonlinear model also produced a deviation in volume of 0 m3 and the total average deviation in distance between harvest areas and ramps was 8.7 km. Scenario 3, with weights of 0.8 for volume and 0.2 for distance, produced these results. The approach and models described through this study may be appropriate for further integration into forest management planning processes developed for the planning of Mediterranean forests.

Publishers:
Copublishers:

Web of Science Impact factor (2020): 2.088
Five-years impact factor: 2.077

Quartile: Q2 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1