Routa Johanna, PhD.

Comparing Two Different Approaches in Modeling Small Diameter Energy Wood Drying in Logwood Piles

volume: 35, issue: 1

Validation of Prediction Models for Estimating the Moisture Content of Small Diameter Stem Wood

volume: 36, issue: 2

Productivity in Mechanizing Early Tending in Spruce Seedling Stands

volume: 41, issue: 1

According to National Forest Inventory data, there is an urgent need for tending seedling stands of at least 700,000 ha and a need for 1 million ha in the next few years in Finland. The motivation for forest owners to conduct pre-commercial silvicultural operations is low due to the associated high costs. Especially the costs of tending and clearing operations after the regeneration of the stand have been increasing. In addition, the availability of labor is a restricting factor due to the high seasonality of silvicultural works.

In the 2000s, several solutions for the mechanization of tending have been proposed. These are based on the use of harvester or a forwarder as a base machine. Typically, light weight base machines are favored to reduce the hourly cost of operations and the impacts on the remaining seedlings. There have been challenges with the high speed of the cutting device, which increases the risk of damages to the head and the ignition of forest fires when the circular saw or chain hits stones, for example. In addition, the chain can become dislocated due to bending forces caused by stumps.

Cutlink has presented a low RPM solution based on rotating cone-shaped shears that cut 50–100 cm wide corridors between and around seedlings. In this study, the productivity of mechanized tending with Cutlink´s device compared to manual tending was evaluated in spruce seedling stands in central Finland. The productivity, fuel consumption and quality of the seedling stand after the operation were measured. In early tending, the productivity of motor manual tending was notably better than when using the Cutlink device. Crucial factors for the competitiveness of a mechanized alternative include the annual working hours and finding suitable working areas for the machine. Additional work for the device and base machine can also be found in the clearing of forest road sides

Roundwood and Biomass Logistics in Finland and Sweden

volume: 42, issue:

Logistics of roundwood and biomass comprise a high number of operations, machinery, storage sites and transportable roundwood and biomass assortments. Moreover, complex and highly varying operational environment through the year poses logistics challenges incurring additional costs. An extensive review of studies was conducted in Sweden and Finland concerning roundwood and biomass logistics, starting from roadside landings and ending with delivery to a mill or a conversion facility. The main aim of the review was to describe trends in roundwood and biomass logistics since the start of the century. Papers were classified to categories of truck transports and roads, terminals, multimodal transports, storage and supply chain logistics. Slightly over 50% of reviewed articles were constrained to biomass only, 31% to roundwood only and 14% to both. Rapid technology development, amendments concerning road transports, increasing environmental concerns and forestry sector’s push to decrease the logistics costs can be seen as the biggest drivers for the reviewed studies and their study objectives. These aspects will also drive and increase the demand for research and development in roundwood and biomass logistics in the future.


Web of Science Impact factor (2020): 2.088
Five-years impact factor: 2.077

Quartile: Q2 - Forestry

Subject area

Agricultural and Biological Sciences