Crojfe

Search

Tolosana Eduardo, PhD.

Analysis of Productivity and Cost of Forwarding Bundles of Eucalyptus Logging Residues on Steep Terrain

volume: 37, issue: .2

Evaluation of a Harvester-Baler System Operating in a Rockrose (Cistus laurifolius L.) Shrubland

volume: 41, issue:

Biomass collection could contribute to the reduction of wildfire prevention costs by obtaining solid biofuels from shrublands that pose a high fire risk, using mechanical harvesting methods that have not been sufficiently tested in shrub formations. The objective of this study is to evaluate the performance of a harvester-baler system (Biobaler WB55) for collecting rockrose (Cistus laurifolius L.) shrublands biomass, to asses the influence of the cutting rotor tool (blades or hammers) on weight and surface productivities and operating costs, as well as to determine the influence of the standing shrub biomass load on productivity and biomass collection efficiency.

A 31-hour test was conducted on 21 ha of a typical Mediterranean shrubland in the centre of Spain. Data collection included time study, daily collected area, fuel consumption and bale measurements. Samples of fresh biomass from bales were collected for the determination of moisture content. The average collected biomass was 2.3 tDM·ha-1 (tonnes of dry matter per hectare), with an average productivity of 1.6 tDM·PMH-1 and an average yield of 0.7 ha·PMH-1. Better results were obtained with blades than with hammers in the cutting rotor tool (35% more collected biomass, 42% higher weight productivity, 61% higher collection efficiency and 14% greater surface productivity). The average harvest-baling costs with blades were estimated at 99.5 €∙PMH-1, 142.1 €∙ha-1 and 53.9 €∙tDM-1 (34.0 €∙tWM-1, € per tonne of wet matter), and with hammers 91.5 €∙PMH-1, 152.5 €∙ha-1 and 81.4 €∙tDM-1 (51.1 €∙tWM-1).

The analysed harvester-baler was operated without difficulty in this type of vegetation and was able to collect up to 31% of the shrub biomass load in the study area. The amount of uncollected biomass and the decrease in biomass collection efficiency, as shrub biomass load increases, suggest that possible mechanical improvements are needed to improve biomass collection efficiency.

Operational and Environmental Comparison of Two Felling and Piling Alternatives for Whole Tree Harvesting in Quercus Coppices for Bioenergy Use

volume: 44, issue:

Coppices are a major potential source of forest biomass in Spain, where they occupy around 4M ha. Quercus coppices are mostly neglected because of their high harvesting costs and the small size of their products. This makes them very interesting to test and compare alternative means for utilizing their resources in an optimized way. Hence, a comparative study of motor-manual and mechanized felling and bunching was conducted when thinning dense coppice stands of the two most important oak species in Spain to obtain biomass for bioenergy use. In particular, the study matched chainsaw felling and manual piling against the work of a drive-to-tree feller-buncher previously analyzed in the very same sites. Productivity functions for motor-manual felling and piling were fitted for each species. The derived unit cost functions show that the felling-bunching costs are lower for the motor-manual option in stands of both species, particularly for the smaller tree sizes. Nevertheless, when the strongly reduced loading times in forwarding associated to the mechanization are taken into account, the total harvesting cost is often lower for the mechanized option. That is true for all tree sizes of Q. ilex, and for trees larger than 13 cm diameter at breast height (DBH) for Q. pyrenaica. Residual stand damage was low to moderate, but always significantly greater for the mechanized option compared with the motormanual one. Soil damage was very low for both alternatives. The stumps experimented significantly greater damages in the mechanized felling and bunching, but further research is needed to determine if those damages have any impact on stump mortality, sprouting capability and future plants vigor. The greater productivity and level of tree damages found in Q. ilex when compared to Q. pyrenaica are likely due to the narrower and lighter crown of the latter.

Overview of Global Long-Distance Road Transportation of Industrial Roundwood

volume: 45, issue:

The aim of the study was to provide a comprehensive overview of global long-distance road transportation of industrial roundwood. The study focused on the maximum gross vehicle weight (GVW) limits allowed with different timber truck configurations, typical payloads in timber trucking, the road transportation share of the total industrial roundwood long-distance transportation volume, and the average long-distance transportation distances and costs of industrial roundwood. The study was carried out as a questionnaire survey. The questionnaire was sent to timber transportation logistics experts and research scientists in the 30 countries with the largest industrial roundwood removals in Europe, as well as selected major forestry countries in the world (Argentina, Australia, Brazil, Canada, Chile, China, Japan, New Zealand, South Africa, Türkiye, the United States of America and Uruguay) in February 2022, and closed in May 2022. A total of 31 countries took part in the survey. The survey illustrated that timber trucking was the main long-distance transportation method of industrial roundwood in almost every country surveyed. Road transportation averaged 89% of the total industrial roundwood long-distance transportation volume. Timber truck configurations of 4 to 9 axles with GVW limits of around 30 tonnes to over 70 tonnes were most commonly used. The results indicated that higher GVW limits allowed significantly higher payloads in timber trucking, with the lowest payloads at less than 25 tonnes, and the highest payloads more than 45 tonnes. The average road transportation distance with industrial roundwood was 128 km, and the average long-distance transportation cost in timber trucking was €11.1 per tonne of timber transported. In the entire survey material, there was a direct relationship between transportation distance and transportation costs and an inverse relationship between maximum GVW limits and transportation costs. Consequently, in order to reduce transportation costs, it is essential to maximise payloads (within legal limits) and minimise haul distances. Several measures to increase cost- and energy-efficiency, and to reduce greenhouse gas emissions in road transportation logistics, are discussed in the paper. On the basis of the survey, it is recommended that up-to-date statistical data and novel research studies on the long-distance transportation of industrial roundwood be conducted in some countries in the future.

Effects of Boom-Corridor and Selective Thinnings on Harvester Productivity in Dense Small Diameter Pyrenean Oak (Quercus pyrenaica Willd.) Coppices in Spain

volume: 45, issue:

Due to socioeconomic transformations in the 20th century, Quercus pyrenaica Willd. coppices in Spain, as well as other European coppices, have experimented an abandonment and lack of intervention leading to stagnant high density stands with fragile health due to competition. Thinnings are often required to ensure their stability and health, producing forest products such as firewood or biomass, which are key energy sources in a carbon-neutral economy. However, thinnings are seldom performed because they lack economic sustainability due to a low productivity, high costs and low biomass prices. In this study, two thinning methods, selective thinning (ST) and boom-corridor thinning (BCT), were tested carrying out a time study in a high-density small-diameter Q. pyrenaica stand in the León province (Castilla y León, Spain) with a forest harvester base machine, on which an accumulating felling head Bracke C16c was mounted. The residual stands were significantly different regarding the final density (greater in BCT) and the final average DBH (bigger in ST), while thinning intensity (odt·ha-1) was the same. In most work elements, time per tree was not significantly different. BCT showed a significant 48.6% increase in harvester productivity when compared to ST, with averaging 4.43 and 2.99 odt·pmh-1, respectively, due mainly to the average weight per extracted tree, 42% greater in BCT. When considering the common range of unit tree weight, the productivity was 16–23% greater for BCT, far less than observed in the trials. These results show the potential of BCT over ST in the studied conditions, although there is room for improvement. Further studies could include the future evolution of the treated stands and perform a cost analysis.

Publishers:
Copublishers:

Web of Science Impact factor (2022): 3.200
Five-years impact factor: 3.000

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1