Vusić Dinko, BSc.

Influence of Load Volume on Productivity of Skidding Euro-American Poplar Stems with Tractor Timberjack 240C in Lowland Forests

volume: 32, issue: 1

Aboveground Biomass of Silver Fir, European Larch and Black Pine

volume: 32, issue: 1

Characteristics and Share of European Beech False Heartwood in Felling Sites of Central Croatia (p.37-49)

volume: 30, issue: 1

LCA Studies in Forestry – Stagnation or Progress?

volume: 38, issue: 2

Biomass Yield and Fuel Properties of Different Poplar SRC Clones

volume: 40, issue:

The goal of the research was to determine the biomass yield and fuel properties of ten different poplar clones. The research was conducted in an experimental plot established in Forest Administration Osijek, Forest Office Darda, in the spring of 2014. The layout of the plot consisted of three repetitions per clone with 40 plants per repetition in spacing 3x1 m. Based on the DBH distribution, in the early spring of 2018, one sample tree of an average DBH per repetition was selected, thus forming a sample of 30 trees.

Average survival rate of the investigated trees after four vegetation periods was 74.54 ±13.85% ranging from 52.08% (Koreana) to 91.67% (SV885 and SV490). Average DBH of the sample trees was 8.2 ±1.9 cm, height 9.3 ±1.8 m and root collar diameter 10.7 ±1.9 cm. Moisture content in fresh state (just after the felling) ranged from 51.6% (Hybride 275) to 55.9% (SV885). Bark content averaged 18.4%, from 15.4% (Baldo) to 21.1% (V 609). Average nominal density of the sampled trees amounted to 383.5 ±35.9 kg/m3. Bark ash content was on average ten times higher (6.44 ±0.65%) than wood ash content (0.64 ±0.07%) resulting in average ash content of 1.7 ±0.1% (taking the bark content into account).

The clone SV490 showed the highest biomass yield with 15.8 t/ha/year, while the lowest biomass yield was recorded for the clone Hybride 275 with 2.8 t/ha/year.

High inter-clonal productivity variation stresses the importance of selection work to find the most appropriate clones with the highest productivity potential for the given area where the poplar SRC plantations are to be established.

Due to high initial moisture content, if direct chipping harvesting systems are preferred, wood chips could be efficiently used in CHP (Combined Heat and Power) plants that operate on the principle of biomass gasification (where a gasifier is coupled to a gas engine to produce electric power and heat). In several CHP gasification plants operating in Croatia, wood chips with high initial moisture content (from traditional poplar plantations) are used as a feedstock that has to be pre-dried using the surplus heat. In this respect SRC poplar wood chips could make an ideal feedstock supplement.


Web of Science Impact factor (2019): 2.500
Five-years impact factor: 2.077

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences