Crojfe

Search

Aminti Giovanni, PhD.

Productivity, Efficiency and Environmental Effects of Whole-Tree Harvesting in Spanish Coppice Stands Using a Drive-to-Tree Disc Saw Feller-Buncher

volume: 39, issue: 2

Whole tree harvesting was conducted on two coppice stands with different tree composition
(Q. ilex and Q. pyrenaica) in gentle terrain. Felling and bunching were performed by a
drive-to-tree wheeled feller-buncher with disc saw head. Operations were analyzed on 17 plots
25x25 m2 in order to develop productivity models and to assess operational costs. The study
also aimed at determining biomass collection efficiency and evaluating the impact of the new
harvesting method on the soil, the remaining trees and stumps. The treatment consisted in a
strong coppice thinning leaving standards. Productivity ranged from 2.8 to 4.6 odt/pmh in
the Q. ilex coppice, and from 0.9 to 2.6 in the Q. pyrenaica stand. Tree species, dry weight
per tree and percentage of removed basal area were the main independent variables affecting
productivity. Approximately 50% of the standards showed damages. Most wounds were light,
caused by the drive-to-tree work pattern, followed through GPS tracking. Soil damage was
also light; in no plots, deep disturbances were found. However, most of the stumps were damaged.
Forwarding and chipping productivity and cost were also evaluated. The slash left on
the terrain averaged 3.0 and 1.5 odt/ha in Q. ilex and Q. pyrenaica, respectively, including
scrub debris. As a conclusion, while this heavy feller-buncher can be useful in coppice heavy
thinnings with larger trees, it would be a good option to try lighter disc saw felling heads
mounted on the harvester boom tip, which probably would reach better productivity and reduce
the frequency of stand damage.

Operational and Environmental Comparison of Two Felling and Piling Alternatives for Whole Tree Harvesting in Quercus Coppices for Bioenergy Use

volume: 44, issue:

Coppices are a major potential source of forest biomass in Spain, where they occupy around 4M ha. Quercus coppices are mostly neglected because of their high harvesting costs and the small size of their products. This makes them very interesting to test and compare alternative means for utilizing their resources in an optimized way. Hence, a comparative study of motor-manual and mechanized felling and bunching was conducted when thinning dense coppice stands of the two most important oak species in Spain to obtain biomass for bioenergy use. In particular, the study matched chainsaw felling and manual piling against the work of a drive-to-tree feller-buncher previously analyzed in the very same sites. Productivity functions for motor-manual felling and piling were fitted for each species. The derived unit cost functions show that the felling-bunching costs are lower for the motor-manual option in stands of both species, particularly for the smaller tree sizes. Nevertheless, when the strongly reduced loading times in forwarding associated to the mechanization are taken into account, the total harvesting cost is often lower for the mechanized option. That is true for all tree sizes of Q. ilex, and for trees larger than 13 cm diameter at breast height (DBH) for Q. pyrenaica. Residual stand damage was low to moderate, but always significantly greater for the mechanized option compared with the motormanual one. Soil damage was very low for both alternatives. The stumps experimented significantly greater damages in the mechanized felling and bunching, but further research is needed to determine if those damages have any impact on stump mortality, sprouting capability and future plants vigor. The greater productivity and level of tree damages found in Q. ilex when compared to Q. pyrenaica are likely due to the narrower and lighter crown of the latter.

Operational and Environmental Comparison of Two Felling and Piling Alternatives for Whole Tree Harvesting in Quercus Coppices for Bioenergy Use

volume: issue, issue:

Coppices are a major potential source of forest biomass in Spain, where they occupy around 4M ha. Quercus coppices are mostly neglected because of their high harvesting costs and the small size of their products. This makes them very interesting to test and compare alternative means for utilizing their resources in an optimized way. Hence, a comparative study of motor-manual and mechanized felling and bunching was conducted when thinning dense coppice stands of the two most important oak species in Spain to obtain biomass for bioenergy use. In particular, the study matched chainsaw felling and manual piling against the work of a drive-to-tree feller-buncher previously analyzed in the very same sites. Productivity functions for motor-manual felling and piling were fitted for each species. The derived unit cost functions show that the felling-bunching costs are lower for the motor-manual option in stands of both species, particularly for the smaller tree sizes. Nevertheless, when the strongly reduced loading times in forwarding associated to the mechanization are taken into account, the total harvesting cost is often lower for the mechanized option. That is true for all tree sizes of Q. ilex, and for trees larger than 13 cm diameter at breast height (DBH) for Q. pyrenaica. Residual stand damage was low to moderate, but always significantly greater for the mechanized option compared with the motormanual one. Soil damage was very low for both alternatives. The stumps experimented significantly greater damages in the mechanized felling and bunching, but further research is needed to determine if those damages have any impact on stump mortality, sprouting capability and future plants vigor. The greater productivity and level of tree damages found in Q. ilex when compared to Q. pyrenaica are likely due to the narrower and lighter crown of the latter.

Publishers:
Copublishers:

Web of Science Impact factor (2021): 2.542
Five-years impact factor: 2.443

Quartile: Q2 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1