Eliasson Lars, PhD.

Effect of Chipper Type, Biomass Type and Blade Wear on Productivity, Fuel Consumption and Product Quality

volume: 35, issue: 1

Effects of Sieve Size on Chipper Productivity, Fuel Consumption and Chip Size Distribution for Open Drum Chippers

volume: 36, issue: 1

Storage of Wood Chips: Effect of Chip Size on Storage Properties

volume: 41, issue:

To make forest biomass more competitive, increased efficiency in the handling and supply system is needed, thus producing high-quality fuel at a lower cost. Operating costs can be reduced if the target chip size is increased, as this increases productivity and reduces chipper fuel consumption. However, the chips need to be storedin order to meet fluctuating seasonal demand and maintain high machine utilisation. Due to biomass degradation, storage of comminuted biomass can lead to high energy losses, but can also increase fuel quality, e.g. by reducing moisture content and increasing net calorific value. This study evaluated the effects of storage on dry matter losses and differences in fuel quality of the stored biomass for three target chip sizes and three materials during six months of storage. The results showed that coarse chips had significantly lower moisture content and lower energy losses after storage than fine chips. Overall, changes during storage resulted in an economic loss of 3–4% per oven-dry ton for fine chips, but an economic gain of 2–6% for coarse chips. Thus increased target chip size can increase the competitiveness of forest biomass through decreased production costs and reduced storage costs. It can also ensure higher, more consistent fuel quality.

Roundwood and Biomass Logistics in Finland and Sweden

volume: 42, issue:

Logistics of roundwood and biomass comprise a high number of operations, machinery, storage sites and transportable roundwood and biomass assortments. Moreover, complex and highly varying operational environment through the year poses logistics challenges incurring additional costs. An extensive review of studies was conducted in Sweden and Finland concerning roundwood and biomass logistics, starting from roadside landings and ending with delivery to a mill or a conversion facility. The main aim of the review was to describe trends in roundwood and biomass logistics since the start of the century. Papers were classified to categories of truck transports and roads, terminals, multimodal transports, storage and supply chain logistics. Slightly over 50% of reviewed articles were constrained to biomass only, 31% to roundwood only and 14% to both. Rapid technology development, amendments concerning road transports, increasing environmental concerns and forestry sector’s push to decrease the logistics costs can be seen as the biggest drivers for the reviewed studies and their study objectives. These aspects will also drive and increase the demand for research and development in roundwood and biomass logistics in the future.


Web of Science Impact factor (2022): 3.200
Five-years impact factor: 3.000

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences