volume: 35, issue: 1
volume: 37, issue: 1
volume: 38, issue: 1
volume: 38, issue: 2
volume: 39, issue: 1
Within the fuel wood supply chain, comminution and transport have been identified as processes
with the highest costs, energy consumption and emissions. The coordination of comminution
and transport aimed at avoiding operational delays is also complex. Nevertheless,
the use of forest biomass helps to reduce the effects of climate change and produces an additional
income, especially in rural areas. About 20 years ago, at the beginning of the industrial
forest fuel utilisation, the focus of the research was on developing and analysing adequate
supply chains and machines. Nowadays, as state-of-the-art systems have been established, the
focus is on improving the efficiency of the processes and the quality of the products. This paper
provides a review of research trends of the last ten years focusing on comminution and transport
of forest biomass in Europe.
Comminution should become more efficient by analysing the effects of wood characteristics on
chipper performance and product quality, by tailoring chipper configuration according to those
findings and by introducing mechanical devices for improving the quality of chips. Transport
processes have the potential to become more efficient if the configuration of trucks is adapted
according to operational and legal requirements, and when considering moisture content
management. Finally, economic and environmental assessment of supply chains was made by
several studies. Future research is expected to focus on customizing the product quality according
to user’s requirements and on optimising the coordination of chipper and truck by
simulation and automatization tools.
volume: 42, issue:
Forest road networks are exposed to damage by traffic, climate, timber harvesting and vegetation. To maintain their functionality, they must be maintained regularly. Periodical maintenance is required when the forest road surface layer is deteriorated and eroded. Well-graded material is required for replacing the forest road surface and often has to be sourced from gravel storage areas, which is costly and requires a large number of truck trips. Therefore, converting non-graded aggregate available on site into well-graded aggregate with a mobile stone crusher is considered a viable alternative.
The present study was carried out during a periodical maintenance treatment at the Bavarian State Forest Enterprise and the effect of employing a mobile stone crusher was evaluated with regard to (1) forest road load bearing capacity development during a one-year period post-treatment, (2) particle size distribution of the surface layer material before and after crushing, and (3) its cost compared to other alternatives. Samples were collected pre- and post-operation for particle size distribution analysis, load bearing capacity was measured repeatedly with a light falling weight deflectometer and compared to an untreated reference section and cost of the treatment was compared to two alternatives.
The mobile stone crusher was capable of reducing the non-graded to well-graded/close-to-well-graded material and particle size distributions aligned well with the recommendations for lime-water bonded surfaces. Load bearing capacity exceeded the threshold of 40 MN m-2 (Evd, elastic modulus dynamic) for primary forest roads at all times. It increased significantly after the treatment and remained on a significantly higher level throughout the following year. Absolute and relative increases were higher than on the untreated reference section. The treatment variant involving a mobile stone crusher and material available on site was substantially cheaper (5.31 € m-1) than to supply non-graded (16.29 € m-1) or well-graded (19.82 € m-1) material by truck. Material and transport costs represented 67% and 82% of the total costs in the latter two cases. It can be concluded that mobile stone crushers are capable of producing at least close-to-well-graded forest road surface aggregate and that forest road load bearing capacity can be significantly and lastingly increased at only a part of the costs of the alternatives. A maximum of cost and resource efficiency and environmental soundness can be attained when enough surface aggregate is available on site. If this is not the case, sourcing non-graded material as local as possible is the next best alternative.
volume: 42, issue:
Cable yarding is a well establish technology for the extraction of timber in steep terrain. However, it is encumbered with relatively low productivity and high costs, and as such this technology needs to adapt and progress to remain viable. The development of biomass as a valuable byproduct, and the availability of processors to support yarder operations, lend themselves to increasing the level of whole-tree extraction. Double-hitch carriages have been developed to allow for full suspension of whole-tree and tree-length material. This study compared a standard single-hitch to a double-hitch carriage under controlled conditions, namely in the same location using the same yarder with downhill extraction. As expected, the double-hitch carriage took longer to load up (+14%), but was able to achieve similar productivity (10–11 m3 per productive machine hour) through increased inhaul speed (+15%). The importance of this study is that it demonstrates both the physical and economic feasibility of moving to whole-tree extraction using the double-hitch type carriage for longer corridors, for settings with limited deflection, or areas with lower tolerance for soil disturbance.
volume: 43, issue:
Cross-cutting of a tree into a set of assortments (»bucking pattern«) presents a large potential for optimizing the volume and value recovery; therefore, bucking pattern optimization has been studied extensively in the past. However, it has not seen widespread adoption in chainsaw bucking, where time consuming and costly manual measurement of input parameters is required for taper curve estimation. The present study investigated an alternative approach, where taper curves are fit based on terrestrial laser scanning data (TLS), and how deviations from observed taper curves (REF) affect the result of bucking pattern optimization. In addition, performance of TLS was compared to a traditional, segmental taper curve estimation approach (APP) and an experienced chainsaw operator’s solution (CHA).
A mature Norway Spruce stand was surveyed by stationary terrestrial laser scanning. In TLS, taper curves were fit by a mixed-effects B-spline regression approach to stem diameters extracted from 3D point cloud data. A network analysis technique algorithm was used for bucking pattern optimization during harvesting. Stem diameter profiles and the chainsaw operator’s bucking pattern were obtained by manual measurement. The former was used for post-operation fit of REF taper curves by the same approach as in TLS. APP taper curves were fit based on part of the data. For 35 trees, TLS and APP taper curves were compared to REF on tree, trunk and crown section level. REF and APP bucking patterns were optimized with the same algorithm as in TLS. For 30 trees, TLS, APP and CHA bucking patterns were compared to REF on operation and tree level.
Taper curves were estimated with high accuracy and precision (underestimated by 0.2 cm on average (SD=1.5 cm); RMSE=1.5 cm) in TLS and the fit outperformed APP. Volume and value recovery were marginally higher in TLS (0.6%; 0.9%) than in REF on operation level, while substantial differences were observed for APP (–6.1%; –4.1%). Except for cumulated nominal length, no significant differences were observed between TLS and REF on tree level, while APP result was inferior throughout. Volume and value recovery in CHA was significantly higher (2.1%; 2.4%), but mainly due to a small disadvantage of the optimization algorithm.
The investigated approach based on terrestrial laser scanning data proved to provide highly accurate and precise estimations of the taper curves. Therefore, it can be considered a further step towards increased accuracy, precision and efficiency of bucking pattern optimization in chainsaw bucking.
volume: 44, issue:
Yarding whole trees is the most efficient way of extracting timber in steep terrain and allows reaping the combined benefits of mechanization and biomass recovery. In downhill yarding, however, whole-tree extraction is associated with a greater risk of loosening rocks or debris by the incoming loads as they bounce around along the extraction corridor. That may also cause damage to the cables and anchors by corresponding shock loads, ultimately endangering the yarder and its crew. To avoid these risks, »double-hitch carriages« can be employed. They combine a conventional motorized dropline carriage with a secondary carriage (»trailer«), equipped with a further, independent dropline winch. Thus, loads can be attached at two points and transported fully suspended above the ground in a horizontal position.
Operation of these carriages may not be limited to the »horizontal« mode: the main carriage could also be operated without trailer (»single« mode), or separate loads may be attached to the two droplines (»double« mode), but their impact on the efficiency and economy of yarding operations is yet unknown. Therefore, the present study investigated how these modes affect the productivity and cost of downhill whole tree yarding. To this end, a classic time and motion study was conducted during a salvage logging operation in Northern Italy under a strictly controlled experimental design.
Average productivity (18.2±7.2 to 24.5±15.4 m³ PSH0-1 merchantable volume per productive system hour excluding delays) and extraction cost (18 to 20 Euro m-³) did not differ significantly between treatments, while load composition and time consumption by task did. More (2.2±0.5) pieces per load were yarded under the »double«, than under the »single« (1.4±0.5) and »horizontal« (1.1±0.3) treatments. Inhaul speed (3.1±0.6 m s-1) was significantly higher under the »horizontal« treatment, which compensated for increased loading time derived from attaching the load at least at one point outside the corridor. Unloading took significantly longer under the »double« treatment, as loads had to be dropped successively due to the confined conditions on the landing. Though slowest (2.5±0.9 m s-1) during inhaul, the »single« treatment exhibited none of the other treatments disadvantages and larger loads could be accumulated due to partial suspension. From an economic viewpoint, the »horizontal« mode may only be warranted over yarding distances substantially beyond average. On shorter ones, it must be justified by other reasons, such as minimizing product contamination, soil disturbance or excessive strain to the skyline when the terrain profile impedes sufficient ground clearance.
volume: 44, issue:
The demand for increased efficiency in timber harvesting has traditionally been met by continuous technical improvements in machines and an increase in mechanisation. The use of active and passive sensors on machines enables improvements in aspects such as operational efficiency, fuel consumption and worker safety. Timber harvesting machine manufacturers have used these technologies to improve the maintenance and control of their machines, to select and optimise harvesting techniques and fuel consumption. To a more limited extent, it has also been used to evaluate the time taken to complete tasks. The systematic use of machine sensor data, in a central database or cloud solution is a more recent trend.
Machine data is recorded over long periods of time and at high resolution. This data therefore has considerable potential for scientific investigations. For mechanised timber harvesting operations, this could include a better understanding of the interaction between productivity and operational parameters, which first of all requires an efficient determination of cycle time.
This study was the first to automatically delimitate tower yarder cycle times from machine sensor data. In addition to machine sensor data, cycle times were collected through a traditional manual time and motion study, and cycle times from both studies were compared to a reference cycle time determined from video footage of the yarder in operation.
Based on three days of detailed time study, the total cycle time in the classic manual time (–1.3%) and in the machine sensor data (–1.2%) was only slightly shorter than in the reference study, and the average cycle time did not differ significantly (classic manual time study: –0.08±0.94 min, p=0.997; machine sensor data study: –0.08±0.26 min, p=0.997). However, the accuracy of the machine sensor approach (RMSE=0.92) was more than three times higher than that of the classic manual time study (RMSE=0.27).
With the integration of sensors on forestry machines now being commonplace, this study shows that machine sensor data can be reliably interpreted for time study purposes such as machine or system optimisation. This eliminates the need for manual time study, which can be both cumbersome and dependent on the experience of the observer, and allows long term data sets to be obtained and analysed with comparatively little effort. However, a truly automated time study needs to be supplemented with automated determination of and linkage to other operational parameters, such as yarding and lateral yarding distance or load volume.
volume: 44, issue:
Introduction: Cable yarding is a technology that enables efficient and sustainable use of timber resources in mountainous areas. Carriages as an integral component of cable yarding systems have undergone significant development in recent decades. In addition to mechanical and functional developments, carriages are increasingly used as carrier platforms for various sensors. The goal of this study was to assess the accuracy of individual standing tree and stand variable estimates obtained by a mobile laser scanning system mounted on a cable yarder carriage.
Methods: Eight cable corridors were scanned across two forest stands. Four different scan variants were conducted, differing in the movement speed of the carriage and the direction of movement during scanning. An algorithm for tree detection, diameter and height estimation was applied to the 3D datasets and evaluated against manual tree measurements.
Results: The analysis of the 3D scans showed that the individual tree parameters strongly depend on the scan variant and the distance of each individual tree to the skyline. This was due to changing 3D point densities and occlusion effects. It turned out that scan variant 1, in which the scan was performed during slow carriage movement downwards and back upwards again, was advantageous. At a distance of 10 m, which is half of the recommended corridor spacing of 20 m for whole tree cable yarding, 95.44% of the trees in stand 1 and 92.16% of the trees in stand 2 could be detected automatically. The corresponding root mean sqare errors of the diameter at breast height estimatimations were 1.59 cm and 2.23 cm, respectively. The root mean square errors of the height measurements were 2.94 m and 4.63 m.
Conclusions: The results of this study can help to further advance the digitization of cable yarding and timber flow from the standing tree to the sawmill. However, this requires further development steps in cable yarder, carriage, and laserscanner technology. Furthermore, there is also a need for more efficient software routines to take the next steps towards precision forestry.