Crojfe

Search

Volume 41 No.2
Current issues:Volume 41 No.2Latest papersMore

Volume 41 No.2

The Effect of New Silvicultural Trends on Mental Workload of Harvester Operators

volume: 41, issue:

Close-to-nature (CTN) forestry offers many advantages, but makes management more complex and generally results in lower harvesting productivity and higher harvesting cost. While the higher harvesting cost of CTN is widely acknowledged, few ever consider the potential impact on operator workload, as the harvesting task becomes more complex. This study aimed to determine the mental workload of harvester operators under two silvicultural regimes: »pure conifer« stand and »mixwood« stand. In total, 13 harvester operators with varying experience levels were monitored for work performance and mental workload when operating a harvester simulator in two virtual stands designed according to the above-mentioned silvicultural regimes. Mental workload was assessed using the NASA Task Load Index (NASA-TLX) interview method and heart rate variability measurements, during two 30-minute test sessions performed in the »pure conifer« and the »mixwood« stand, respectively. As expected, operating in a more diversified »mixwood« stand resulted in a marked productivity loss, estimated between 40 and 57%. The study also confirmed the increased aggravation of mental demand, effort and frustration experienced by the operators when passing from the »pure conifer« stand to the »mixwood« stand. Such increase in mental workload was independent of the age and experience of the operators. Results can be used to paint a more holistic picture of CTN forestry and its implications for harvester operators. Besides increasing the number of subjects being monitored, future studies should focus on live forest operations.

Evaluation of a Harvester-Baler System Operating in a Rockrose (Cistus laurifolius L.) Shrubland

volume: 41, issue:

Biomass collection could contribute to the reduction of wildfire prevention costs by obtaining solid biofuels from shrublands that pose a high fire risk, using mechanical harvesting methods that have not been sufficiently tested in shrub formations. The objective of this study is to evaluate the performance of a harvester-baler system (Biobaler WB55) for collecting rockrose (Cistus laurifolius L.) shrublands biomass, to asses the influence of the cutting rotor tool (blades or hammers) on weight and surface productivities and operating costs, as well as to determine the influence of the standing shrub biomass load on productivity and biomass collection efficiency.

A 31-hour test was conducted on 21 ha of a typical Mediterranean shrubland in the centre of Spain. Data collection included time study, daily collected area, fuel consumption and bale measurements. Samples of fresh biomass from bales were collected for the determination of moisture content. The average collected biomass was 2.3 tDM·ha-1 (tonnes of dry matter per hectare), with an average productivity of 1.6 tDM·PMH-1 and an average yield of 0.7 ha·PMH-1. Better results were obtained with blades than with hammers in the cutting rotor tool (35% more collected biomass, 42% higher weight productivity, 61% higher collection efficiency and 14% greater surface productivity). The average harvest-baling costs with blades were estimated at 99.5 €∙PMH-1, 142.1 €∙ha-1 and 53.9 €∙tDM-1 (34.0 €∙tWM-1, € per tonne of wet matter), and with hammers 91.5 €∙PMH-1, 152.5 €∙ha-1 and 81.4 €∙tDM-1 (51.1 €∙tWM-1).

The analysed harvester-baler was operated without difficulty in this type of vegetation and was able to collect up to 31% of the shrub biomass load in the study area. The amount of uncollected biomass and the decrease in biomass collection efficiency, as shrub biomass load increases, suggest that possible mechanical improvements are needed to improve biomass collection efficiency.

Technical, Economic, and Environmental Parameters of Excavator-Based Harvester in Function of Engine Speed and Hydraulic Pump Flow

volume: 41, issue:

Excavators-based harvesters are self-propelled forestry tractors that normally operate at maximum engine speed. This results in maximum hydraulic pump flow regardless of operating conditions. The objective of this work was to quantitatively investigate the technical performance, as well was the economic and environmental outcomes, of excavators-based harvester as a function of engine speed and hydraulic pump flow. Machine operations were analyzed in forest stands with an individual average volume of 0.08 or 0.16 m3 tree–1. The machine was operated with engine speeds of 2060, 2000, 1950, or 1900 rpm and hydraulic pump flow rates of 300, 295, or 290 L min–1. This resulted in 12 different excavator-based harvester configurations. With regards to the technical performance of the machine, a study of times and movements, productivity, hourly fuel consumption, and fuel consumption was performed. Economic outcomes were considered in terms of the operational costs, while environmental impact was determined by carbon dioxide and methane emissions. Optimal excavator-based harvester operating conditions with an average volume of 0.08 m3 tree–1 were determined to be with an engine speed of 2000 rpm and a hydraulic pump flow rate of 295 L min–1. With the 0.16 m3 tree–1 volume, the best results were obtained with an engine speed of 2000 rpm and a hydraulic pump flow of 300 L min–1.

Technical-Economic Analysis of Grapple Saw: A Stochastic Approach

volume: 41, issue:

The processing of Eucalyptus logs is a stage that follows the full tree system in mechanized forest harvesting, commonly performed by grapple saw. Therefore, this activity presents some associated uncertainties, especially regarding technical and silvicultural factors that can affect productivity and production costs. To get around this problem, Monte Carlo simulation can be applied, or rather a technique that allows to measure the probabilities of values from factors that are under conditions of uncertainties, to which probability distributions are attributed. The objective of this study was to apply the Monte Carlo method for determining the probabilistic technical-economical coefficients of log processing using two different grapple saw models. Field data were obtained from an area of forest planted with Eucalyptus, located in the State of São Paulo, Brazil. For the technical analysis, the time study protocol was applied by the method of continuous reading of the operational cycle elements, which resulted in production. As for the estimated cost of programmed hour, the applied methods were recommended by the Food and Agriculture Organization of the United Nations. The incorporation of the uncertainties was carried out by applying the Monte Carlo simulation method, by which 100,000 random values were generated. The results showed that the crane empty movement is the operational element that most impacts the total time for processing the logs; the variables that most influence the productivity are specific to each grapple saw model; the difference of USD 0.04 m3 in production costs was observed between processors with gripping area of 0.58 m2 and 0.85 m2. The Monte Carlo method proved to be an applicable tool for mechanized wood harvesting for presenting a range of probability of occurrences for the operational elements and for the production cost.

Multi-Product Forwarder-Based Timber Extraction: Time Consumption and Productivity Analysis of Two Forwarder Models Over Multiple Products and Extraction Distances

volume: 41, issue:

Accurate predictions in forest operations can be used towards effective planning, costing, and maximizing the productivity of machines in mechanised cut-to-length (CTL) harvesting. There is a general and substantial gap in forwarder productivity data available for pine sawtimber in South Africa at present, and as the number of product assortments being harvested increase there is a need for more work to quantify the effects of extracting products of different dimensions. The aim of this study was to calculate the time consumption and productivity of two models of Ponsse forwarders (15 t and 20 t capacity) to consider and compare the effects of multiple variables including machine capabilities, product assortment, load size, extraction distance and fuel consumption. Productivity averaged at 34.08 m3 per productive machine hour excluding delays longer than one minute (PMH1) for the smaller machine, and 55.94 m3/PMH1 for the larger machine. Productivity and average log volume were strongly positively correlated. Regression models were created for each machine where load volume and extraction distance were both significant factors for predicting productivity. Average fuel consumption of the smaller machine was 15.55 l/PMH1 and 0.47 l/m3, and 20.57 l/PMH1 and 0.43 l/m3 for the larger machine. The product with the largest volume was found to require the least fuel per m3. The models developed could aid in predicting system productivity and potentially carbon emissions under similar conditions in a South African context of industrial plantation forestry.

Impact of Distance between Strip Roads on Productivity and Costs of a Forwarder in Commercial Thinning of Pinus Taeda Stands

volume: 41, issue:

Demand for higher value-added wood products stimulates research for new, mainly mechanized, thinning operations in order to increase productivity and reduce production costs. In this context, the aim of this study was to evaluate the impact of distance between strip roads on forwarder productivity and costs of thinning operations in Pinus taeda stands. The study was carried out in 10-year-old Pinus taeda stands located in Parana State, Brazil. Two thinning methods were evaluated: (1) TH5: systematic harvest in every fifth tree row and selective harvest in adjacent rows; and (2) TH7: systematic harvest in every seventh tree row and selective harvest in adjacent rows. Working cycle times, productivity and costs were determined through a time-motion study of the forwarder. The additional variables evaluated were wood assortments (industrial wood and energy wood) and extraction distances (50, 100, 150 and 200 m), and mean values were compared between thinning methods using t tests for independent samples (α=0.05). Loading and unloading elements consumed the most time in the working cycle, with lower participation time in TH7 due to greater availability of logs along the strip roads (higher pile volumes), influencing total cycle time up to the mean distance of 150 m for both assortments. TH7 consequently showed 6% higher productivity, its energy yield was 5.3% lower and its production cost was 3.0% lower.

Harvesting System Suitability as Decision Support in Selection Cutting Forest Management in Northwest Bosnia and Herzegovina

volume: 41, issue:

Planning of forest harvesting operations is one of the key elements of successful forest management. The integration of modern tools and traditional forestry procedures is something that must be done in contemporary forestry. This research investigated the use of multicriteria decision support (AHP) and GIS in choosing the optimal harvesting system for predominantly selection cutting forest management on the example of two Forest Management Units (FMU). Results showed that AHP could be easily integrated into GIS using the extAHP tool and its results could be of help, along with other input data, in choosing the optimal harvesting system. Spatial analysis of raster data in GIS gives a comprehensive insight into the stand and terrain characteristics and shows the relative share of the area proposed for each system. In FMU »Kozara–Mlječanica«, the harvesting system chainsaw-skidder had the highest relative share with 44% of the area, meaning that it is almost the only harvesting system in current use, followed by chainsaw-forwarder (36%), chainsaw-cable yarder (19%), and chainsaw-adapted agriculture tractor (AAT) (1%). The system harvester-forwarder was not used at all, which is understandable considering that FMU »Kozara–Mlječanica« has a higher average slope and higher diameter of trees to be cut than FMU »Prosara«, where harvester-forwarder system accounts for a significant 36% of the area. The dominant system in FMU »Prosara« was chainsaw-forwarder (42%), followed by chainsaw-cable yarder (17%), chainsaw-skidder (4%) and chainsaw-AAT (1%). It should be noted that the presence of chainsaw-skidder system is insignificant. It is replaced by the system chainsaw-forwarder. Traditional harvesting system chainsaw-skidder, which prevails in Bosnia and Herzegovina, should be upgraded with the new technologies and methods. Using tools like multicriteria decision support and GIS could be of great help in that process.

On the Importance of Integrating Transportation Costs into the Tactical Forest Harvest Scheduling Model

volume: 41, issue:

In tactical forest management planning, the decisions required to meet the strategic plan are made, and these include: i) scheduling of spatially explicit harvest-blocks; ii) construction of a road-network required to access these blocks; and iii) transportation costs within the tactical forest planning area (hereafter only referred to as transportation costs) that emerge from the first two decisions. These three decisions are interdependent and should therefore be integrated in any optimization model. At present, this integration is not fully made. This is because: i) the integrated model is NP-hard, and exact solutions are not feasible for large and medium-sized forests; and ii) metaheuristic search algorithms, which can be used on larger forests, have not integrated transportation costs realistically.

The economic consequences of not integrating transportation costs into tactical planning models has not been quantified and evaluated by researchers; and the objective of this paper is to fill this gap in knowledge. To this end, an exact solution approach is used to solve and compare two integrated models: i) a model in which transportation costs are included in the objective function, and b) a model in which transportation costs are excluded from the objective function. The models were applied to three forests ranging in area from 6628 to 19,677 ha.

Results show that: i) the model which included transportation costs yielded solutions with major reductions in both transportation and total costs; and ii) that, as the forests to which the model was applied tripled in area (from 6628 ha to 19,677 ha), the percent reduction in total costs increased disproportionately – more than fivefold (from 3.9% to 21%). These results are important, for they indicate that the integration of transportation costs into a tactical planning model is of major economic consequence.

Storage of Wood Chips: Effect of Chip Size on Storage Properties

volume: 41, issue:

To make forest biomass more competitive, increased efficiency in the handling and supply system is needed, thus producing high-quality fuel at a lower cost. Operating costs can be reduced if the target chip size is increased, as this increases productivity and reduces chipper fuel consumption. However, the chips need to be storedin order to meet fluctuating seasonal demand and maintain high machine utilisation. Due to biomass degradation, storage of comminuted biomass can lead to high energy losses, but can also increase fuel quality, e.g. by reducing moisture content and increasing net calorific value. This study evaluated the effects of storage on dry matter losses and differences in fuel quality of the stored biomass for three target chip sizes and three materials during six months of storage. The results showed that coarse chips had significantly lower moisture content and lower energy losses after storage than fine chips. Overall, changes during storage resulted in an economic loss of 3–4% per oven-dry ton for fine chips, but an economic gain of 2–6% for coarse chips. Thus increased target chip size can increase the competitiveness of forest biomass through decreased production costs and reduced storage costs. It can also ensure higher, more consistent fuel quality.

Round Wood Waste and Losses – Is Rationalisation in Scaling Possible?

volume: 41, issue:

The term »loss« should be distinguished from the term »waste« commonly used by forestry practitioners to indicate the difference between gross volume (planned production based on official tariffs) and net volume (produced timber volume) of trees. Volume loss in round wood refers to the difference between the actual volume of round wood and the volume determined based on the prescribed method of measurement and calculation. As a result of prescribed scaling methods and calculations, volume losses appear due to 1) used volume equations, 2) prescribed method of measurement (i.e. measurements of length and mid-length diameter) and 3) deduction of double bark thickness. In Croatia, round wood is cross-cut and transported with bark, while logs are measured and sold without bark. In this way, the bark is an unnecessary ballast in production, but has many possible applications such as energy source, in the production of wooden boards in construction, in nurseries and horticulture, etc. The research was conducted on 225 butt-logs of sessile oak (Quercus petraea (Matt.) Liebl.) ranging in diameter classes from 27.5 cm to 67.5 cm from even-aged forests in the central part of Croatia. Deduction of double bark thickness caused a higher average loss in the volume when using Huber’s equation at 14% and when using Riecke-Newton’s equation at 13.5%. In both volume estimation methods, the loss due to double bark thickness was slightly reduced exponentially as the diameter of but-logs increased. The determined dependence of the bark thickness on diameter of butt-logs over bark indicates the need for correction of the bark deduction tables that are in operational use in Croatian forestry and are provided by trading practices, and since they are not the result of scientific research, they lead to unfair payment between sellers and buyers of round wood. Comparison analysis of the simulation of butt-logs indicated that the introduction of Riecke-Newton’s equation for estimating the volume of commercially important assortments in Croatian forestry is justified. The use of Riecke-Newton’s equation in these terms leads on average to a 6.6% higher volume of butt-logs than the use of Huber’s equation for estimating the volume of assortments.

Effects of Soil Conservation Practices on Sediment Yield from Forest Road Ditches in Northern Iran

volume: 41, issue:

The fine-textured soil in forest road ditches is very susceptible to water erosion especially in rainy seasons in Hyrcanian forest. This study examined the yield of ditch segment-scale sediment after releasing two flow rates of 5 l s-1 and 10 l s-1 in segments treated by riprap (RR), grass cover by Festuca arundinacea L. (GC), compacted cotton geotextile (CG) and wooden wattle by local slash (WW). Sediment sampling from the runoff was carried out at the end of each segment every minute. Runoff flow velocity in different treatments was measured using an electromagnetic flow meter. Sediment concentration and runoff velocity in treatments of RR, GC, CG, WW was significantly lower than that of the control plot (Ctl). Increasing flow rate from 5 l s-1 to 10 l s-1 caused no significant change in sediment concentration (except for Ctl and RR) and runoff velocity (except for Ctl and CG), which means that some water might have penetrated into treated soil by RR, GC and WW and this is not acceptable in forest road maintenance practices. Sediment yield from RR (0.36 g l-1) and Ctl (0.50 g l-1) under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1 with values of 0.21 g l-1 and 0.38 g l-1, respectively. Minimum amount of sediment concentration was observed for CG (0.20 g l-1) with compacted ditch bed. Moreover, runoff velocity in CG and Ctl under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1. For a forest road with dimension 30×50 cm, slope of 5%, and clay soil with porosity of 57%, treatments of compacted CG can be used in ditch with low flow rates (5 l s-1) and high flow rate (10 l s-1) because of their high efficiency in reducing sediment yield.

Effectiveness of Three Post-Harvest Rehabilitation Treatments for Runoff and Sediment Reduction on Skid Trails in the Hyrcanian Forests

volume: 41, issue:

Ground-based skidding operations can lead to soil compaction and displacement, which could cause negative effects on forest soil. Hence, some efforts such as forestry best management practices (BMPs) must be implemented in the prone area to mitigate these possible impacts. Several materials and treatments have been adopted to suppress these adverse effects by increasing the ground cover. However, the effects of mulch treatments on runoff and sediment yield are inconclusive with a diverse range of effectiveness. For these reasons, in this research mulch treatments were tested as to determine how the application of organic mulch amendments such as straw and leaf litter and contour-felled logs would alleviate the runoff and sediment yield on machine operating trails and ensure successful hillslope stabilization. The aims of the study were to analyse and compare the effectiveness of leaf litter (LM) and straw mulch (SM) rate and different distances of contour-felled logs (CFL) to mitigate the runoff and sediment yield, and examine the impact of rainfall intensity on effectiveness of litter mulch, straw mulch, and contour-felled logs. Totally, 30 bounded runoff plots in the machine operating trails and four treatments including litter mulch (LMR1: 0.62, LMR2: 1.24, and LMR3: 1.86 kg m-2), straw mulch (SMR1: 0.45, SMR2: 0.92, and SMR3: 1.34 kg m-2), contour-felled logs (CFL10: 10, CFL20: 20, and CFL30: 30 m), and untreated area were established in triplicate with 4 m width and 100 m length. During the study period, the runoff and sediment yield in the untreated trails (U) were 2.36 mm and 11.84 g m-2. Straw (from 41.5 to 60.6%) and litter mulch (from 38.1 to 55.1%), and contour-felled logs treatments (from 70.8 to 88.1%) significantly decreased the runoff, compared to U treatment. Results show that mulch treatments with three different levels of Litter Mulch Rate, LMR1, LMR2, and LMR3 decreased mean sediment by 46.6, 64.0 and 71.8%, in the treatments with three different levels of Straw Mulch Rate, SMR1, SMR2, and SMR3 decreased mean sediment by 42.9, 62.1, and 69.9%, and in the treatments with three different distances of Contour-Felled Logs, CFL10, CFL20, and CFL30 decreased mean sediment by 90.6, 94.7 and 88.3% comparing to U, respectively. The relationships of the runoff and sediment responses to increasing mulching rate of litter and straw followed as negative logarithmic curves, but the decreasing-increasing trends were observed in runoff and sediment yield as the distance between contour-felled logs increased from 10 to 30 m. Polynomial regression equations were developed for predicting the runoff and sediment yield as a function of the application rate of litter and straw mulch and the distance between contour-felled logs, and rainfall intensity. We concluded that contour-felled logs treatment was more effective than both litter and straw mulch to mitigate the runoff, runoff coefficient, and sediment yield on machine operating trails. As a management measure, it could be possible to propose that the contour-felled logs with a distance of 20 m be prescribed to protect the machine operating trails from the negative effects of surface waterflow.

An Evaluation of the Performance of Chainsaw Lubricants

volume: 41, issue:

Chainsaws require lubrication of the guide bar and saw chain to function properly. Many oils are commercially available to provide this lubrication. Economical and more recently environmental concerns are increasingly compelling consideration of the best type of oil to use. Several published scientific studies provide some guidance, but additional information is needed for operators to make informed and effective choices in lubricating oil selection. The work presented in this paper contributes to providing this guidance by comparing the performance of economy and premium versions of three commonly-used types of lubricating oils: petroleum-based bar-and-chain oil, biodegradable bar-and-chain oil, and petroleum-based motor oil. Testing was conducted on a laboratory chainsaw test apparatus used in prior published scientific studies of chainsaw performance. Testing consisted of free running (i.e. chain traveling about the bar at cutting speed but not cutting) for a prescribed time period, while lubricating oil was applied to the guide bar and saw chain in the usual manner and at typical flow rates. Based on the correlations between wear, friction, and temperature, the mean guide bar temperature was used as the measure of performance of each oil. Results showed that, while each oil type performed adequately, the petroleum-based bar-and-chain oil performed best and the biodegradable-based oil performed worst with the petroleum-based motor oil providing intermediate performance. No consistent correlation was found between either the unit cost of each oil and its performance or the perceived quality of each oil (economy versus premium) of each oil and its performance. Tribological properties of flash point, viscosity, and four-ball wear were measured. A weak correlation was found between flash point values and performance. A possible Stribeck relationship was found for viscosity implying a possible transition from mixed and hydrodynamic lubrication. No correlations were found between performance and four-ball wear test results. These results support chainsaw operator observations and other published scientific findings that a variety of oils can be effectively used as lubricants. The lack of correlation of performance with some commonly-measured tribological properties suggests lubricating-oil providers should consider the use of a dedicated saw chain testing apparatus in product development.

Oil Consumption in 4WD Farm Tractors Used in Forestry Operations

volume: 41, issue:

Farm tractors are still widely used in many forestry operations. Predicting fuel and lubricant costs is difficult because their consumption depends on a number of factors such as hours worked and operations performed. Fuel and lubricant consumption is important since it can have an impact at both the economic and environmental level. Many fuel models have been studied in the last decades, but few studies have focused on oil consumption. The ASABE (American Society of Agricultural and Biological Engineers) Standard suggested a model for predicting engine oil consumption of farm tractors of the 1980s, which are potentially different from modern tractor engines. In addition, the recent widespread application of semi- and full-power-shift and continuous variable transmissions and the high number of hydraulic applications increased the amount of lubrication oil for transmission and hydraulic systems.

For these reasons, we analysed 133 4WD recent model farm tractors used in forest operations with the aim to study:

Þ   engine, transmission and hydraulic system oil capacities

Þ   engine oil change intervals as recommended by the manufacturers.

A new equation for engine oil consumption, as a function of the rated engine power, was first used and statistically analysed. It was similar to the equation developed by other authors (with a mean difference of 28%, decreasing to 11% at the highest engine power), but well below the ASABE model (with an average engine oil consumption three times higher). Another equation of total oil consumption related to the rated engine power was then studied and compared with a recent study. The results showed an average difference of 18%, decreasing to 8% at the highest engine power. The differences, due to a different machine dataset (only 4WD farm tractors that can be used for forestry operations were analysed) are, however, minimal also in the engine oil consumption model if compared with the oldest ones: a new proposal is therefore necessary, with new and affordable models for correctly evaluating economic and environmental forestry operation costs when using farm tractors.

Temporal Patterns of Vehicle Collisions with Roe Deer and Wild Boar in the Dinaric Area

volume: 41, issue:

The purpose of this study was to determine the frequency of wildlife-vehicle collisions (WVC) based on the animal species, and to deepen the knowledge of temporal patterns of vehicle collisions with roe deer and wild boar. The study analyses the data from police reports on vehicle collisions with animals on state roads, by date and time, section of road, and animal species over a 5-year period (2012–2016). These data were analysed to determine the temporal dynamics of vehicle collisions with roe deer and wild boar by month, time of day, and moon phase. On the state roads in the Dinaric area, roe deer are most commonly involved in vehicle collisions (70.1% of all collisions), followed by wild boar (11.0%). Other large species involved in collisions were fallow deer (4.8%), brown bear (1.8%), red deer (0.9%), grey wolf (0.7%), and European mouflon (0.5%), respectively. Most collisions with roe deer occurred in the period April–August, with reduced frequency during autumn and winter. For wild boar, there was no association between month and frequency of collisions. At the annual level, collisions with roe deer were significantly higher during night (37%) and twilight (41%) than during the day (22%). For wild boar, most collisions occurred during twilight (26%) and night (72%), although the difference between these two periods was not statistically significant. For roe deer, collisions had no association with lunar phase, though wild boar collisions during twilight (dawn or dusk) were more common during twilight periods on days with less moonlight. Since vehicle collisions with wildlife showed certain temporal patterns, these should be taken into consideration in developing statistical models of spatial WVC patterns, and also in planning strategies and countermeasures to mitigate WVC issues.

Publishers:
Copublishers:

Web of Science Impact factor (2019): 2.500
Five-years impact factor: 2.077

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1