Crojfe

Search

Impact of Season and Harvester Engine RPM on Pine Wood Damage from Feed Roller Spikes

Copyright © 2017 by Croatian Journal of Forest Engineering
volume: 39, issue: 2
pp: 9
Author(s):
  • Karaszewski Zbigniew
  • Łacka Agnieszka
  • Mederski Piotr S.
Article category:
Original scientific paper
Keywords:
bark loss, harvesting head, mechanised logging, pilodyn, Pinus sylvestris L.

Abstract

HTML

PDF

Harvesters have become a common solution for wood harvesting in coniferous and broadleaved
stands. Unfortunately, not every customer will accept logs with damage on the lateral surface
of the roundwood caused by feed roller spikes. The extent of the wood damage caused by the spikes
of harvester heads depends mainly on the type of feed rollers and tree species. The objective of the
study was to investigate the external damage to pine (Pinus sylvestris L.) roundwood from
harvester head spikes depending on the season of the year and harvester engine RPM, as well as
the significance and potential consequences of such damage. The scope of the study also included
an analysis of wood damage depth in three stem sections. The experimental plots selected
were all in an 85-year-old pure pine stand. Logging was performed using a Ponsse Beaver harvester
with an H60e harvester head manufactured in 2006. The mean depth of wood damage at
all the points of measurement was 4.1 mm, while the maximum depth of wood damage totalled
5.3 mm. The depth of wood damage depended on the season of the year in which the logging work
was performed, the harvester engine RPM and the stem section from which the log was processed.
The damage was the deepest during summer operations and the shallowest during winter and
springtime. The differences were statistically significant, however, the difference in the depth of
damage was only 1 mm in average. Deeper wood damage was found at a lower engine RPM.
Wood damage depth differed axially, and the least damage was found in the bottom logs.

Publishers:
Copublishers:

Web of Science Impact factor (2023): 2.7
Five-years impact factor: 2.3

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1