volume: 42, issue:
Forest operations often enhance runoff and soil loss in roads and skid trails, where cut slopes and fill slopes are the most important source of sediment. This study evaluated the effectiveness of four erosion control treatments applied to cut slope and fill slope segments of forest roads of different ages in the Hyrcanian forest in northern Iran. The treatment combinations, each replicated three times, included four classes of mulch cover (bare soil [BS], wood chips cover [WCH], sawdust cover [SC], and rice straw cover [RSC]), two levels of side slope (cut slope and fill slope), two levels of side slope gradient (20–25% and 40–45%), and three levels of road age (three, 10 and 20 years after construction). Mulch cover treatments significantly reduced average surface runoff volume and sediment yield compared to BS. Regardless of erosion control treatment, greater surface runoff volume and soil loss under natural rainfall occurred on steeper slope gradients in all road age classes and decreased with increasing road age on both slope gradients. On cut slopes, average runoff and soil loss from the plots covered with WCH (17.63 l per plot, 2.43 g m–2) was lower than from those covered with SC (22.81 l per plot, 3.50 g m–2), which was lower than from those covered with RSC (29.13 l per plot, 4.41 g m–2 and BS (34.61 l per plot, 4.94 g m–2). On fill slopes, average runoff and soil loss from the plots covered with WCH (14.13 l per plot, 1.99 g m–2) was lower than from plots covered with SC (20.01 l per plot, 3.23 g m–2), which was lower than from plots covered with RSC (24.52 l per plot, 4.06 g m–2) and BS (29.03 l per plot, 4.47 g m–2). Surface cover successfully controlled erosion losses following road construction, particularly on steep side slopes with high erosion potential.
volume: 43, issue:
Forest operations can lead to increased runoff and soil loss on roads and skid trails. The aim of this study was to evaluate the effectiveness of two erosion control treatments applied to different segments of skid trails following six natural rainfall events. A total of 162 plots 10 m long by 4 m wide were established in a Hyrcanian deciduous forest to assess soil runoff and soil loss following ground-based harvesting traffic. The experimental setup consisted of three levels of traffic intensity (three, eight and 16 skidder passes), two levels of slope gradient (≤20% and >20%), three classes of curvature (narrow = high deflection angle, 60°–70°; wide = low deflection angle, 110°–130°, and straight trail segments), and three classes of mulch cover (bare soil, sawdust cover, and rice straw cover). Each treatment combination was replicated three times, yielding 972 soil samples. The average surface runoff volume and soil loss differed significantly between the switchbacks and the straight trail segments and depended strongly on the degree of curvature, with severity of adverse effects increasing with curve tightness. Mulch cover treatments had a significant ameliorating effect on the surface runoff volume and soil loss throughout the skid trail. The average runoff and soil loss from the skid trails treated with sawdust cover (SC) (0.24 g m-2 (mm) and 0.49 g m-2, respectively) were lower than on trails covered with rice straw (RSC) (0.45 g m-2 and 1.19 g m-2, respectively), which were, in turn lower than on untreated bare soil (BS) trail segments (0.70 g m-2 and 2.31 g m-2, respectively). Surface runoff volume was significantly positively correlated with soil loss and both were positively correlated with dry bulk density and rut depth and negatively correlated with litter mass, total porosity, and macroporosity. Surface cover is a successful measure for controlling erosion losses following skidding disturbances, particularly in the switchback curves of trails on steep slopes where erosion potential is high.