Eco-efficient technologies in forestry

Analysis of Hazardous Emissions of Hand-Operated Forestry Machines Fuelled with Standard Mix or Alkylate Gasoline

volume: 39, issue: 1

In addition to safety, small hand-operated forestry machines can be criticised for affecting the
operators’ health, especially because of high levels of exhaust gas emissions, noise and vibrations.
In this study, gas emissions, noise and hand-arm vibrations (HAV) levels have been measured
on chainsaws, hedge cutters and blowers fuelled with two different types of fuel: a commercial
RON 95 gasoline with the addition of 2% of synthetic oil suitable for two-stroke engines and,
as an alternative, a specific advanced mixture available on the market, based on alkylate gasoline.
For two different running conditions, i.e. with the engine at idle speed and when executing a
typical working routine (maximum speed with load), tests were carried out for:
Þ gas emissions, using a gas analyser, for measuring the volatile organic compounds (VOC)
Þ noise, using a sound level meter, to record the levels at both of the operator’s ears
Þ HAV, using a tri-axial accelerometer fixed on the handgrip(s) of the machines.
The results demonstrated that, when using the alkylate fuel, the VOC emissions were reduced,
in the considered machines, from 23 to over 77%, while for noise and HAV, the differences in
level were not statistically significant. The present study confirms that the reduction in the
amount of emissions can be remarkably improved by adopting advanced fuels that lead to a
more efficient combustion process.

Attitudes of Small and Medium-Sized Enterprises towards Energy Efficiency in Wood Procurement: A Case Study of Stora Enso in Finland

volume: 40, issue: 1

Stora Enso Wood Supply Finland (WSF) was certified to the ISO 50001 Energy Efficiency
Management System standard in 2015. At Stora Enso WSF, the goal is to improve energy
efficiency by 4% by 2020 from 2015. Improving the energy efficiency of wood procurement
(i.e. logging and timber trucking) enterprises is currently one of the main focus areas for energy
efficiency development at Stora Enso WSF. In order to clarify its state-of-the-art in the
business of wood procurement enterprises at Stora Enso WSF, logging and timber-trucking
entrepreneurs were interviewed in November and December 2017. The survey data consisted
of 25 logging and 25 timber-trucking entrepreneurs. The coverage rate of both entrepreneur
groups was 73.5% in the survey. The results indicated that timber-trucking enterprises highlight
more energy efficiency and fuel efficiency than logging enterprises. For instance, the
timber-trucking entrepreneurs underscored more energy efficiency in their acquisition decisions
of new vehicles and the greater role of fuel efficiency in the energy-efficient business than
logging entrepreneurs during 2016 and 2017. Furthermore, the survey results revealed that
logging and trucking enterprises can improve energy efficiency in their business by organizing
more energy efficiency education (i.e. economical and anticipated driving training) for
their machine operators and truck drivers. There is a positive attitude towards energy efficiency
among both logging and timber-trucking entrepreneurs. This creates a solid background
to deepen and continue energy-effective work in the wood supply chain between the enterprises
and Stora Enso WSF in the future.

Selected Environmental Impacts of Forest Harvesting Operations with Varying Degree of Mechanization

volume: 40, issue:

Climate change affects forest ecosystems, impacting timber production and eco-services. Conversely, sustainable forest management has been identified as a means to help mitigate carbon dioxide emissions, a greenhouse gas and contributor to climate change, while also maximizing multiuse benefits through close-to-nature silviculture. In this study, a life cycle assessment was performed on forest harvesting operations at three research sites to provide real-world understanding of the selected environmental impacts associated with harvesting systems typical of Germany: motor-manual (chainsaw and forest tractor), semi-mechanized (single-grip harvester, chainsaw, and forwarder), and fully-mechanized (single-grip harvester and forwarder). Environmental impact categories assessed included greenhouse gas emissions, particulate matter emissions, and non-renewable energy consumption. Results from the three research sites were estimated on a machine basis. The semi-mechanized system resulted in the lowest environmental impact, the majority of which was attributed to felling and processing operations. Next, the environmental impacts were estimated for a complete rotation period and compared amongst the different harvesting systems. According to results, semi-mechanized harvesting systems had the lowest impact over the full rotation period as well as for thinning treatments when compared to motor-manual and fully-mechanized systems. The fully-mechanized system performed the best for final felling treatments. Considering variability between the research sites as well as the system boundary assessed, a diversified approach to harvesting operations may be considered, integrating semi-mechanized and fully-mechanized systems for different treatments throughout the rotation period.

Oil Consumption in 4WD Farm Tractors Used in Forestry Operations

volume: 41, issue:

Farm tractors are still widely used in many forestry operations. Predicting fuel and lubricant costs is difficult because their consumption depends on a number of factors such as hours worked and operations performed. Fuel and lubricant consumption is important since it can have an impact at both the economic and environmental level. Many fuel models have been studied in the last decades, but few studies have focused on oil consumption. The ASABE (American Society of Agricultural and Biological Engineers) Standard suggested a model for predicting engine oil consumption of farm tractors of the 1980s, which are potentially different from modern tractor engines. In addition, the recent widespread application of semi- and full-power-shift and continuous variable transmissions and the high number of hydraulic applications increased the amount of lubrication oil for transmission and hydraulic systems.

For these reasons, we analysed 133 4WD recent model farm tractors used in forest operations with the aim to study:

Þ   engine, transmission and hydraulic system oil capacities

Þ   engine oil change intervals as recommended by the manufacturers.

A new equation for engine oil consumption, as a function of the rated engine power, was first used and statistically analysed. It was similar to the equation developed by other authors (with a mean difference of 28%, decreasing to 11% at the highest engine power), but well below the ASABE model (with an average engine oil consumption three times higher). Another equation of total oil consumption related to the rated engine power was then studied and compared with a recent study. The results showed an average difference of 18%, decreasing to 8% at the highest engine power. The differences, due to a different machine dataset (only 4WD farm tractors that can be used for forestry operations were analysed) are, however, minimal also in the engine oil consumption model if compared with the oldest ones: a new proposal is therefore necessary, with new and affordable models for correctly evaluating economic and environmental forestry operation costs when using farm tractors.


Web of Science Impact factor (2019): 2.500
Five-years impact factor: 2.077

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences