Crojfe

Search

Akay Abdullah Emin, PhD

Productivity of a Portable Winch System Used in Salvage Logging of Storm-Damaged Timber

volume: 40, issue:

Storm damages result in serious losses in many regions, primarily by stem breakage or blowdown. Extraction of storm-damaged trees often requires more difficult than normal skidding activities due to obstacles created during the storm. In this study, the productivity of a portable winch was evaluated as a possible alternative to recover storm-damaged timber. Field measurements were conducted in the Alabarda Forest Enterprise Chief located near the city of Kütahya in western Turkey, where storm damage often occurs during the winter season. The time study was implemented in two slope classes (35% and 55%) and two skidding distances (40 m and 60 m). All timber was skidded uphill. A regression mode was developed that related productivity to log volume, ground slope and skidding distance. The highest percentage of total cycle time was observed for skidding logs to the landing. The highest productivity (3.96 m3/hour) was found at the shorter skidding distance (40 m) and the lower ground slope (35%). Statistical analyses indicated that productivity was most highly affected by log volume, followed by skidding distance and ground slope. Larger log loads increased productivity, while both longer skidding distances and steeper slopes reduced productivity.

Evaluating the Effects of Improving Forest Road Standards on Economic Value of Forest Products

volume: 42, issue:

Forest roads are the key infrastructures that provide access to forest areas for sustainable management, protection, and utilization of forest resources. In order to benefit from the important functions of forest roads, they should be built in with adequate technical road standards. The road network with low technical standards require more frequent major repairs to ensure continues access to forest resources. In addition, only small trucks with low load capacity can move on the low standard roads. Furthermore, the low road standards limit the truck speed that increases vehicle travel time. These negative effects increase the transportation costs which are an important part of the timber production costs in Turkey. Thus, improving the road standards and developing forest transportation planning should be evaluated together in the most appropriate way. Large logging trucks with high load capacity are generally preferred for efficient transportation of wood-based forest products. In Turkey, large logging trucks, however, cannot operate on the most of the forest roads because insufficient technical road standards (road width, curve radius, surface materials, road structures) limit the maneuverability of large logging trucks. In this study, the objective is to determine the effects of improving forest road standards on total net profit of forest products by using the NETWORK 2000 program, a heuristic approach for solving forest transportation problems. Three Forest Enterprise Chiefs (FECs) located in Mustafakemalpaşa Forest Enterprise Directorate (FED) in Bursa Forest Regional Directorate were selected as the study area. The digital data layers for forest road network was generated by using ArcGIS 10.4 software. In the solution process, firstly, the optimum routes that minimize the transportation cost and maximize the total net profit of forest products on existing forest road networks were investigated for a truck type (15 ton) currently used in the region. In the second case, forest transportation was planned for the high load capacity truck (29 ton) moving on the forest roads with improved standards. In the first case, the transportation costs and annual major repair costs were considered in the calculation of the net profit of forest products, while one time cost of road improvement activities (i.e. road improvement construction, road structure installation, road surface construction) and annual maintenance costs were considered along with transportation costs in the second case. In both cases, the costs of other forest operations (i.e. felling, logging, etc.) were not considered since it was assumed that they do not vary with the forest transportation alternatives. As a result of the transportation plan developed for high load capacity truck, the annual transportation cost decreased by 46.85% comparing to the local logging trucks with low load capacity. Using improved road standards, the total road costs computed for the time period of 30 years (i.e. the average expected life cycle of forest roads) were reduced by 4.64%. The total net profit of forest products transported by using a high load capacity truck was 473,340 Euro more than that of using low load capacity truck on the existing forest road network. Thus, improving road standards might result in some additional costs in the road construction stage, but total net profit of forest products increase since transportation costs along with maintenance and repair costs considerably decrease in the long term.

Essential Issues Related to Construction Phases of Road Networks in Protected Areas: A Review

volume: 43, issue:

Protected areas play an active role in protecting natural resources and wildlife habitat. These areas must be accessible within protection-use balance. For this reason, road networks in protected areas are one of the main functions of sustainable infrastructure services. The construction phases of road networks in these sensitive areas should be considered in planning within the balance of protection-use with interdisciplinary studies. Especially during the construction of the road network, it is necessary to pay attention to the construction machinery used, geotextile materials, hydraulic and ecological road structures, plantation of the slopes, fences that increase the visual quality and work schedule. Based on a related literature survey, the issues to be considered during the construction phases of road networks (i.e. road planning, tree felling and removing, excavation and embankment, subgrade finishing, road structures and surfacing) in protected areas were evaluated under nine headings. The implementation phases of these issues are important in reducing the adverse effects that will occur in protected areas. In this regard, during the construction phases of road networks, the issues to be considered were evaluated together with the conceptual indicators in terms of management, technique, economy, ecology, and aesthetics. Matters needing attention according to the sensitivity of conceptual indicators during the construction phases of road networks in and around protected areas that contain sensitive ecosystems have been identified and presented in a framework to further the discussions on this issue. Accordingly, the use of the issues to be considered in the planning and construction of road networks with conceptual indicators will help evaluate the planning phase before and after construction. In particular, it can be expected to lead to the creation of a checklist after the planning phase. Thus, the continuity of the issues to be considered during the maintenance, repair, and construction phases of the new road networks or existing road networks planned to be built in a protected area and surrounding areas will provide significant contributions to the functions of the protected areas. The main contributions may include increasing the number of visitors to the protected areas, reducing impacts on wildlife in protected areas by implementing innovative technologies, and developing alternative modes in tourism industry.

A Comparison of Two Felling Techniques Considering Stump-Height-Related Timber Value Loss

volume: 44, issue:

Harvest from plantations can provide both industrial wood and forest residues for bioenergy, including stumps. The literature suggests that the choice of cutting system can affect the division between industrial wood recovery and remaining stump volume. In this study, two felling techniques - motor-manual chainsaw and feller-buncher, were compared based on stump-height-related timber value loss for four ground slope classes: high, medium, low, and flat. The economic value loss of wood material for three products - sawlogs, pulpwood, and fiber-chip wood, was determined based on the estimated volume of stumps left in the woods. The results indicated that the average stump height for the motor-manual chainsaw and feller-buncher was 17.16 cm and 8.69 cm. The economic value loss of wood material per stump was higher in felling by manual chainsaw as compared to the feller-buncher operation (log: €0.60­, paper wood: €0.29­, fiber-chip: €0.15­). However, volume loss due to high stumps could contribute to wood for bioenergy if stumps are subsequently removed. Additional research is needed to evaluate the benefits and costs of stump removal for bioenergy as part of a total supply chain to provide both industrial wood and wood for bioenergy.

A Comparison of Two Felling Techniques Considering Stump-Height-Related Timber Value Loss

volume: issue, issue:

Harvest from plantations can provide both industrial wood and forest residues for bioenergy, including stumps. The literature suggests that the choice of cutting system can affect the division between industrial wood recovery and remaining stump volume. In this study, two felling techniques - motor-manual chainsaw and feller-buncher, were compared based on stump-height-related timber value loss for four ground slope classes: high, medium, low, and flat. The economic value loss of wood material for three products - sawlogs, pulpwood, and fiber-chip wood, was determined based on the estimated volume of stumps left in the woods. The results indicated that the average stump height for the motor-manual chainsaw and feller-buncher was 17.16 cm and 8.69 cm. The economic value loss of wood material per stump was higher in felling by manual chainsaw as compared to the feller-buncher operation (log: €0.60­, paper wood: €0.29­, fiber-chip: €0.15­). However, volume loss due to high stumps could contribute to wood for bioenergy if stumps are subsequently removed. Additional research is needed to evaluate the benefits and costs of stump removal for bioenergy as part of a total supply chain to provide both industrial wood and wood for bioenergy.

Publishers:
Copublishers:

Web of Science Impact factor (2021): 2.542
Five-years impact factor: 2.443

Quartile: Q2 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1