Crojfe

Search

Papa Ivica, BSc.

Looking Forward to the 45th International Symposium FORMEC 2012

volume: 33, issue: 1

Primary Forest Opening of Different Relief Areas in the Republic of Croatia

volume: 32, issue: 1

Possibilities of Application of Relative Openness in Secondary Forest Opening of Slope Forests in Croatia

volume: 32, issue: 1

Filling in the Clearance of a Forest Road Cross-Section in Beech Forest (p.53-62)

volume: 29, issue: 1

50 Years of FORMEC International Network

volume: 38, issue: 2

LCA Studies in Forestry – Stagnation or Progress?

volume: 38, issue: 2

Round Wood Waste and Losses – Is Rationalisation in Scaling Possible?

volume: 41, issue:

The term »loss« should be distinguished from the term »waste« commonly used by forestry practitioners to indicate the difference between gross volume (planned production based on official tariffs) and net volume (produced timber volume) of trees. Volume loss in round wood refers to the difference between the actual volume of round wood and the volume determined based on the prescribed method of measurement and calculation. As a result of prescribed scaling methods and calculations, volume losses appear due to 1) used volume equations, 2) prescribed method of measurement (i.e. measurements of length and mid-length diameter) and 3) deduction of double bark thickness. In Croatia, round wood is cross-cut and transported with bark, while logs are measured and sold without bark. In this way, the bark is an unnecessary ballast in production, but has many possible applications such as energy source, in the production of wooden boards in construction, in nurseries and horticulture, etc. The research was conducted on 225 butt-logs of sessile oak (Quercus petraea (Matt.) Liebl.) ranging in diameter classes from 27.5 cm to 67.5 cm from even-aged forests in the central part of Croatia. Deduction of double bark thickness caused a higher average loss in the volume when using Huber’s equation at 14% and when using Riecke-Newton’s equation at 13.5%. In both volume estimation methods, the loss due to double bark thickness was slightly reduced exponentially as the diameter of but-logs increased. The determined dependence of the bark thickness on diameter of butt-logs over bark indicates the need for correction of the bark deduction tables that are in operational use in Croatian forestry and are provided by trading practices, and since they are not the result of scientific research, they lead to unfair payment between sellers and buyers of round wood. Comparison analysis of the simulation of butt-logs indicated that the introduction of Riecke-Newton’s equation for estimating the volume of commercially important assortments in Croatian forestry is justified. The use of Riecke-Newton’s equation in these terms leads on average to a 6.6% higher volume of butt-logs than the use of Huber’s equation for estimating the volume of assortments.

A Meta-Analysis to Evaluate the Reliability of Depth-to-Water Maps in Predicting Areas Particularly Sensitive to Machinery-Induced Soil Disturbance

volume: 45, issue: 2

The careful planning of the extraction routes is one of the most important best management practices to limit soil disturbance related to ground-based forest operations. Over the recent years, this task has been commonly addressed in the framework of boreal forestry, by developing soil trafficability maps based on the depth-to-water (DTW) topographic index. The basic concept of trafficability maps developed with the DTW index is that soils at low DTW index, namely <1, could be more prone to soil compaction and rutting as they tend to have higher moisture content. However, previous studies that tried to assess the reliability of these maps reported contrasting results. Therefore, the present meta-analysis was developed to evaluate if soils at low DTW index (≤1) are actually more sensitive to soil compaction and rutting than soils at higher DTW index (>1). A database was created containing all the studies that assessed soil compaction and rutting in soils at low DTW index (experimental treatment) and high DTW index (control treatment), and a multivariate meta-analysis was used to check the presence of statistically significant effect size. Then the influence on the effect size of variables like soil texture, number of machine passage and weight of the machine, was checked by applying sub-group meta-analysis and meta-regression. Finally, a sensitivity analysis was performed by removing possible outliers from the database and repeating the analyses. No statistical differences were found in soil compaction and rutting severity in areas at low DTW index in comparison to the control areas (DTW index ≥1). The results showed that soil texture, number of machine passage and weight of the machine did not have a significant influence on the effect size. The sensitivity analysis developed after removing outliers from the database fully confirmed the obtained results. Thus our meta-analysis showed that the DTW index in its current form is not a fully reliable predictor of soil areas that could be particularly sensitive to machinery-induced disturbance. It is therefore recommended to use the DTW index to create trafficability maps, always taking into account that the results of the algorithms should be validated in the field before starting harvesting operations.

Technodiversity – Glossary of Forest Operations Terms

volume: 45, issue: 2

The Technodiversity project addresses technological diversity by gathering a common basis of technological knowledge and increasing the sensitivity for diversity in forest engineering. It aims to bring together and make generally available the existing knowledge in forest operations that is scattered across various European countries. It will serve as a bridge between different regions of Europe and generations of students, practitioners, scientists and academics. In this article, a small part of the e-learning module (https://technodiversity-moodle.ibe.cnr.it/) is presented in a glossary of some of the terms of forest operations.

Publishers:
Copublishers:

Web of Science Impact factor (2023): 2.7
Five-years impact factor: 2.3

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences

Category/Quartile

Forestry/Q1