volume: 32, issue: 2
volume: 35, issue: 2
volume: 36, issue: 2
volume: 37, issue: 1
volume: 37, issue: .2
volume: 38, issue: 2
volume: 40, issue: 1
Decision making in forestry is very complex and requires consideration of trade-offs among
economic, environmental, and social criteria. Different multi-criteria decision analysis
(MCDA) methods have been developed for structuring and exploring the decision-making
process of such problems. Although MCDA methods are often used for forest management
problems, they are rarely used for forest operation problems. This indicates that scholars and
practitioners working with forest operations are either unaware of MCDA methods, or see no
benefit in using these methods. Therefore, the prime objective of this review was to make
MCDA methods more intelligible (compared with current level of understanding) to novice
users within the field of forest operations. For that purpose, basic ideas as well as the strengths
and limitations of selected MCDA methods are presented. The second objective was to review
applications of MCDA methods in forest operations. The review showed that MCDA applications
are suitable for forest operation problems on all three planning levels – strategic, tactical,
and operational – but with least use on the operational level. This is attributed to: 1) limited
availability of temporally relevant and correct data, 2) lack of time (execution of MCDA
methods is time consuming), and 3) many operational planning problems are solved with
regards to an economic criterion, with other criteria serving more as frames. However, with
increased importance of environmental and social aspects, incorporating MCDA methods into
the decision-making process on the operational planning horizon (e.g., by developing MCDAbased
guidelines for forestry work) is essential.
volume: 43, issue:
Although most mechanized forestry work relies heavily on cranes for handling logs along the supply chain, there has been little research on how to improve cranes design. In addition, the available research has mainly focused on improving current designs, so there is a lack of application of modern methods for designing cranes with improved efficiency.
This paper analyzes how a mechanical engineering design method, known as gravity compensation, can be used to make a new generation of highly energy efficient forestry cranes. To introduce this design approach, a standard forwarder crane with two booms is used as a model system on which to apply gravity compensation concepts. The design methodology follows a procedure based on physics and mathematical optimization, with the objective of minimizing the energy needed to move the crane by using gravity compensation via counterweights. To this end, we considered to minimize mechanical power, because this quantity relates to how fuel and hydraulic fluid are converted into mechanical motion.
This analysis suggests that using gravity compensation could reduce energy consumption due to crane work by 27%, at the cost of increasing the crane total mass by 57%. Thus, the original crane mass of 559 kg increases to 879 kg after applying gravity compensation with counterweights. However, overall reductions in energy consumption would depend on both the crane work and the extraction distance. The greater the extraction distance, the lower the total savings. However, energy consumption savings of around 2% could be achieved even with an extraction distance of 1 km.
From a design perspective, this study emphasized the need to consider gravity compensation in the design philosophy of forestry cranes, not only for its ability to minimize energy consumption, but also due to all the inherited properties it provides. This initial study concludes that designing cranes with a combination of gravity compensation concepts could yield a new generation of highly energy efficient cranes with energy savings exceeding those reported here.
volume: 45, issue: 2
The Technodiversity project addresses technological diversity by gathering a common basis of technological knowledge and increasing the sensitivity for diversity in forest engineering. It aims to bring together and make generally available the existing knowledge in forest operations that is scattered across various European countries. It will serve as a bridge between different regions of Europe and generations of students, practitioners, scientists and academics. In this article, a small part of the e-learning module (https://technodiversity-moodle.ibe.cnr.it/) is presented in a glossary of some of the terms of forest operations.