Forest road network planning, management and construction

Planning Forest Road Network in Natural Forest Areas: a Case Study in Northern Bosnia and Herzegovina

volume: 39, issue: 1

Natural forests are one of the three types of forest management in terms of origin. These forests
are of seed origin and they regenerate naturally. Therefore, natural forests are the most important
forest category from the point of view of timber production, as well as its quality and
biodiversity. The natural forests accessibility and overall forest accessibility are insufficient
for sustainable forest management. This is the reason for dealing with planning of forest roads,
actually planning of forest accessibility and designing of forest roads in this forest category.
This task requires quantity and quality analysis of the current forest road network, determination
of optimal density of forest roads, determination of suitability of forest area for the construction
of forest roads and designing of forest roads in the end. Planning of forest roads is
carried out at strategic level. Analytic Hierarchy Process (AHP) allows the selection and
evaluation of influential factors related to planning of forest roads. The tools of Geographic
Information System (GIS) allow a complete spatial and statistical analysis and management
of data collected from the forest management plans or data surveyed in the field and obtained
by means of »Digital Terrain Model« (DTM) and AHP method. Planning of forest roads will
be done in the Management Unit (MU) »Prosara«, located in the northern part of Bosnia and
Herzegovina (BIH). The current density of forest roads is 7.3 m/ha in natural forests of this
management unit. The optimal density of forest roads should be 17 m/ha. The length of new
forest roads designed in the MU »Prosara« is 21 km, and forest accessibility has increased to
13.5 m/ha.

Study of Forest Road Effect on Tree Community and Stand Structure in Three Italian and Iranian Temperate Forests

volume: 39, issue: 1

Roads are built in forests for two main reasons, but always in function of management of forest
ecosystems, and these reasons are to provide access to the forest area for transportation
mobility and wood extraction. This creates a relatively even network in the forest. This topic
has received much attention in recent years due to its function and effect on forested rural
landscapes and the related environment. Forest road network is important for various types
of functional use, such as the interface between forested lands and roads. The aim of this study
is to assess the effects of road existence and use on the occurrence of tree dieback and on the
composition of the tree community in three forest areas (two in Italy and one in Iran). The
effort to determine the dynamics of the effects caused by road use was done by examining the
changes in stand structure and abundance of species. As demonstrated by the results, the
edges (20 m) of the forest road network are a fine mosaic composed of different trees (qualitative
and quantitative), coupled with the moderate presence of dead trees. In the three areas, from
the road edges to the interior forest, a similar taxonomic composition of forest community was
found. The first main difference was related to the abundance of less shadow tolerant species
along the road. The second main difference was related to the tree biodiversity indices that are
higher along the road. The main similarities are in the structure of live and dead trees.

Pavement Deterioration Modeling for Forest Roads Based on Logistic Regression and Artificial Neural Networks

volume: 39, issue: 2

The accurate prediction of forest road pavement performance is important for efficient management
of surface transportation infrastructure and achieves significant savings through timely
intervention and accurate planning. The aim of this paper was to introduce a methodology
for developing accurate pavement deterioration models to be used primarily for the management
of the forest road infrastructure. For this purpose, 19 explanatory and three corresponding
response variables were measured in 185 segments of 50 km forest roads. Logistic regression
(LR) and artificial neural networks (ANNs) were used to predict forest road pavement
deterioration, Pothole, rutting and protrusion, as a function of pavement condition, environmental
factors, traffic and road qualify. The results showed ANNs and LR models could classify
from 82% to 89% of the current pavement condition correctly. According to the results,
LR model and ANNs predicted rutting, pothole and protrusion with 83.5%, 83.00% and
81.75%, 88.65% and 85.20%, 80.00% accuracy. Equivalent single axle load (ESAL), date of
repair, thickness of pavement and slope were identified as most significant explanatory variables.
Receiver Operating Characteristic Curve (ROC) showed that the results obtained by
ANNs and logistic regression are close to each other.

Forest Road Planning, Construction and Maintenance to Improve Forest Fire Fighting: a Review

volume: 40, issue: 1

Forest roads play a key-role in fire fighting activities. In fact, all ground-based activities are
strictly related to the presence of forest roads as access to fire edge. In spite of this important
role, forest roads are often planned and built without considering their use in fire fighting, and
this also occurs in literature, where few studies are dedicated to the importance of forest roads
in fire fighting. A well-developed and well-maintained forest road network is the answer to
different needs in fire management. The objective of this review is to clarify basic principles
for obtaining efficient road network also for fire fighting, collecting, defining and resuming
the main roles, the most important aspects and the reported experiences to be taken into account
in forest road network planning and maintenance in fire-prone areas. The most important
themes treated are related to: i) the analysis of the functions of forest roads in fire prevention
and suppression; ii) the importance of forest road planning and building also considering their
importance for protecting forests against fires: iii) the construction and maintenance characteristics
to be considered for building and maintaining an efficient forest road network against
fires; iv) the importance of fire prevention and the related role of forest roads. Special attention
has been dedicated to maintenance activities, because a not well-maintained forest road is a
not efficient forest road, and it represents a useless economic and environmental cost.

Using Wood-Shred, Rice-Straw and Brush-Wood-Dams with Planting Seedlings to Runoff and Erosion Control in a Forest Road Fill Slope

volume: 40, issue:

This study aimed to investigate the effects of two types of natural geotextiles, including wood shred (WS), rice straw (RS) and the biomechanics method of brush wood dam (BWD) with planting seedlings of Alnus glutinosa and Salix alba on runoff, soil loss and fill slope. The effects were compared with those obtained from control treatment. A total of 36 plots (2×4m) with three replicates in the direction of gradient to fill slope of a forest road in northern Iran was considered. Soil moisture, canopy cover of seedlings, vegetation coverage, runoff, sedimentation and erosion were measured in plots during 12 months. BWD and WS played an effective role in reducing runoff by 57% and 73%, respectively. By using RS and WS,  the sediment concentration was decreased by 23% and 11%, respectively, while by using BWD it increased by 58%. RS (24.16%) and BWD (7%) had the greatest and smallest impact on reducing vegetation coverage, respectively. BWD (33%) and RS (27%) had the highest and lowest canopy cover of seedlings, respectively. Results showed that both RS (22.23%) and A. glutinosa (4.96%) had the greatest effects on increasing soil moisture. Comparison between the planted species and the control treatment (with no seedlings) showed that S. alba was effective in reducing runoff (46.22%), while A. glutinosa was effective in reducing erosion (66.89%) and sediment concentration (53.52%). Finally, interactions between conservation treatment and planting of seedlings played a more effective role in controlling runoff and erosion. Therefore, the application of conservation treatments together with planting of seedlings is recommended in order to provide better soil conservation and restoration of fill slope.

Recycled Asphalt as an Alternative to Natural Aggregates for Forest Road Reinforcement

volume: 41, issue: 1

The objective of the present paper is to confirm or reject the possible use of recycled asphalt to reinforce forest haul roads regarding the technical requirements set by the standards and directives relevant to the construction of forest road surfaces. The hypothesis is based on the presumption that recycled materials, if correctly used, can reach the same construction properties as standard materials, hence their application does not have a negative effect on reinforcement quality. On a selected stretch of forest road, three test sections were constructed with the use of recycled asphalt, however, each of them with a different technological solution. The first section was reinforced with unbound mixture – Type1 without added water, the second section was constructed using a version of vibrated macadam technology, and recycled asphalt was applied to the third section by the method of basic compacting. In each of the sections, tacheometric cross profile measurement was carried out at monthly intervals to monitor the changes in the cross profile shape, and the number of passages of fully loaded logging trucks was registered; static load tests were performed at pre-defined time intervals to determine the deformation moduli such as deformation characteristics of the road surface structural layers. In all three reinforcement versions, the values of deformation moduli observed during the static load tests were between 68–90% of the values set by relevant standards for these technologies using natural aggregates. However, the tacheometric measurements did not reveal statistically significant changes in the shape of the reinforcement cross-section. Based on the obtained results, applying recycled asphalt to reinforce forest roads seems to be a suitable alternative to natural quarry aggregate used in unbound structural layers. Recycled material needs to meet the regulatory limits for foreign elements and pass ecotoxicity tests, which is evidenced by a certificate on material compliance issued by the test laboratory.

Recovery of Forest Soil Chemical Properties Following Soil Rehabilitation Treatments: an Assessment Six Years after Machine Impact

volume: 41, issue: 1

Several rehabilitation treatments have been applied to mitigate runoff and sediment in machine trafficked areas following logging operations, while the knowledge on the consequence of these remediation techniques on the recovery of soil properties remains scarce. The objective of the study was to determine the effect of different rehabilitation treatments including sawdust mulch (SM), water diversion structure (WDS), untreated/bare trail (U), and undisturbed or control area (UND) on the recovery of soil chemical properties over a six-year period after machine-induced compaction occurred on three longitudinal trail gradients (10, 20, and 30 %).In each treatment, the following soil properties were measured: litter thickness, pH, EC, soil organic C, total N, and available P, K, Ca, and Mg. Five sampling plots (with 10 m length and 4 m width) were positioned in each trail gradient classes and three of these plots were randomly considered for soil sampling.The results demonstrate that litter thickness differed among the three treatments, with the highest amount present on the UND area and lowest on the U treatment. Meanwhile, the highest pH (6.75), EC (0.21 Ds m−1), N (0.27 %), available P (14.61 mg kg−1), available K (123.5 mg kg−1), available Ca (135.1 mg kg−1), and available Mg (42.1 mg kg−1) and the lowest C (1.21 %) and C/N ratio (7.83 %) were found on the SM with gradient of 10 % compared to other gradient classes on SM, WDS and, U treatments. The recovery value of litter depth, pH, EC, C, N, C/N ratio, and available nutrients (P, K, Ca, and Mg) were higher on the SM than the WDS at the gradient of 10 %, while significantly higher levels of these variables were measured under WDS installed on trail gradients of 30 % and 20 % when compared with the same gradients on SM. Results of the study revealed that soil chemical properties showed some evidence of recovery following SM and WDS rehabilitation treatments compared to U, although these properties did not fully recover within 6 years as compared to UND area

Effects of Soil Conservation Practices on Sediment Yield from Forest Road Ditches in Northern Iran

volume: 41, issue:

The fine-textured soil in forest road ditches is very susceptible to water erosion especially in rainy seasons in Hyrcanian forest. This study examined the yield of ditch segment-scale sediment after releasing two flow rates of 5 l s-1 and 10 l s-1 in segments treated by riprap (RR), grass cover by Festuca arundinacea L. (GC), compacted cotton geotextile (CG) and wooden wattle by local slash (WW). Sediment sampling from the runoff was carried out at the end of each segment every minute. Runoff flow velocity in different treatments was measured using an electromagnetic flow meter. Sediment concentration and runoff velocity in treatments of RR, GC, CG, WW was significantly lower than that of the control plot (Ctl). Increasing flow rate from 5 l s-1 to 10 l s-1 caused no significant change in sediment concentration (except for Ctl and RR) and runoff velocity (except for Ctl and CG), which means that some water might have penetrated into treated soil by RR, GC and WW and this is not acceptable in forest road maintenance practices. Sediment yield from RR (0.36 g l-1) and Ctl (0.50 g l-1) under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1 with values of 0.21 g l-1 and 0.38 g l-1, respectively. Minimum amount of sediment concentration was observed for CG (0.20 g l-1) with compacted ditch bed. Moreover, runoff velocity in CG and Ctl under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1. For a forest road with dimension 30×50 cm, slope of 5%, and clay soil with porosity of 57%, treatments of compacted CG can be used in ditch with low flow rates (5 l s-1) and high flow rate (10 l s-1) because of their high efficiency in reducing sediment yield.

Challenges in Forest Road Maintenance in North America

volume: 42, issue:

Maintenance is a key component of managing a forest road network. Forest road networks in North America are managed to provide economic access to forest resources while minimizing the environmental impacts of those roads. While managers understand the importantance of road maintenance, there is a considerable backlog in the maintenance required on most forest road networks. This article reviews challenges across North America in forest road maintenance. Challenges reviewed include those associated with climate change, changing land use and intermingled ownerships, legacy roads, decision support, and financial barriers.

Periodical Maintenance of Forest Roads with a Mobile Stone Crusher

volume: 42, issue:

Forest road networks are exposed to damage by traffic, climate, timber harvesting and vegetation. To maintain their functionality, they must be maintained regularly. Periodical maintenance is required when the forest road surface layer is deteriorated and eroded. Well-graded material is required for replacing the forest road surface and often has to be sourced from gravel storage areas, which is costly and requires a large number of truck trips. Therefore, converting non-graded aggregate available on site into well-graded aggregate with a mobile stone crusher is considered a viable alternative.

The present study was carried out during a periodical maintenance treatment at the Bavarian State Forest Enterprise and the effect of employing a mobile stone crusher was evaluated with regard to (1) forest road load bearing capacity development during a one-year period post-treatment, (2) particle size distribution of the surface layer material before and after crushing, and (3) its cost compared to other alternatives. Samples were collected pre- and post-operation for particle size distribution analysis, load bearing capacity was measured repeatedly with a light falling weight deflectometer and compared to an untreated reference section and cost of the treatment was compared to two alternatives.

The mobile stone crusher was capable of reducing the non-graded to well-graded/close-to-well-graded material and particle size distributions aligned well with the recommendations for lime-water bonded surfaces. Load bearing capacity exceeded the threshold of 40 MN m-2 (Evd, elastic modulus dynamic) for primary forest roads at all times. It increased significantly after the treatment and remained on a significantly higher level throughout the following year. Absolute and relative increases were higher than on the untreated reference section. The treatment variant involving a mobile stone crusher and material available on site was substantially cheaper (5.31 € m-1) than to supply non-graded (16.29 € m-1) or well-graded (19.82 € m-1) material by truck. Material and transport costs represented 67% and 82% of the total costs in the latter two cases. It can be concluded that mobile stone crushers are capable of producing at least close-to-well-graded forest road surface aggregate and that forest road load bearing capacity can be significantly and lastingly increased at only a part of the costs of the alternatives. A maximum of cost and resource efficiency and environmental soundness can be attained when enough surface aggregate is available on site. If this is not the case, sourcing non-graded material as local as possible is the next best alternative.

Pavement Engineering for Forest Roads: Development and Opportunities

volume: 42, issue:

Pavement is an essential component of roads as it carries the traffic and provides the required riding comfort. Considering that numerous forest roads are approaching their end of life, the critical issue is identifying the best rational pavement design methods to reengineer existing and build new pavement structures. The purpose of this contribution was (1) to review the big development lines of pavement systems, (2) to have a critical look at the pavement engineering framework, and (3) to bring selected empirical design equations into a comparable scheme. The study resulted in the following significant findings. First, the Trésaguet and McAdam pavement systems represented the state of the art from the beginning of a formal forest road engineering discipline at the beginning of the 19th century and remained for almost 150 years. Second, the emergence of soil mechanics as a scientific discipline in the 1920s resulted in the optimal grading of aggregates and improvement of soils and aggregates with binders, such as lime, cement, and bitumen. Third, the rational pavement design consists of five essential components: (1) bearing resistance of the subsoil, (2) bearing resistance of the pavement structure, (3) lifecycle traffic volume, (4) uncertainties that amplify deterioration, and (5) the limit state criterion, defining thresholds, above which structural safety and serviceability are no longer met. Fourth, rational, formal pavement design approaches used for forest roads were »downsized« from methodologies developed for high-volume roads, among which the approaches of the American Association of State Highway and Transportation Officials (AASHTO) and US Army Corps of Engineers (USACE) are of primary interest. Fifth, the conversion of the AASHTO '93 and USACE '70 methods into the SI system indicated that both equations are sensitive to soil bearing resistance, measured in California Bearing Ratio (CBR). However, there is a lack of validation for the AASHTO and USACE equations for forest road conditions. Consequently, a factorial observational study to gain a basis for validation should be developed and implemented. Additionally, the conversion of simple soil bearing resistance measures, such as CBR, into the resilient modulus will be improved.

Evaluating the Effects of Improving Forest Road Standards on Economic Value of Forest Products

volume: 42, issue:

Forest roads are the key infrastructures that provide access to forest areas for sustainable management, protection, and utilization of forest resources. In order to benefit from the important functions of forest roads, they should be built in with adequate technical road standards. The road network with low technical standards require more frequent major repairs to ensure continues access to forest resources. In addition, only small trucks with low load capacity can move on the low standard roads. Furthermore, the low road standards limit the truck speed that increases vehicle travel time. These negative effects increase the transportation costs which are an important part of the timber production costs in Turkey. Thus, improving the road standards and developing forest transportation planning should be evaluated together in the most appropriate way. Large logging trucks with high load capacity are generally preferred for efficient transportation of wood-based forest products. In Turkey, large logging trucks, however, cannot operate on the most of the forest roads because insufficient technical road standards (road width, curve radius, surface materials, road structures) limit the maneuverability of large logging trucks. In this study, the objective is to determine the effects of improving forest road standards on total net profit of forest products by using the NETWORK 2000 program, a heuristic approach for solving forest transportation problems. Three Forest Enterprise Chiefs (FECs) located in Mustafakemalpaşa Forest Enterprise Directorate (FED) in Bursa Forest Regional Directorate were selected as the study area. The digital data layers for forest road network was generated by using ArcGIS 10.4 software. In the solution process, firstly, the optimum routes that minimize the transportation cost and maximize the total net profit of forest products on existing forest road networks were investigated for a truck type (15 ton) currently used in the region. In the second case, forest transportation was planned for the high load capacity truck (29 ton) moving on the forest roads with improved standards. In the first case, the transportation costs and annual major repair costs were considered in the calculation of the net profit of forest products, while one time cost of road improvement activities (i.e. road improvement construction, road structure installation, road surface construction) and annual maintenance costs were considered along with transportation costs in the second case. In both cases, the costs of other forest operations (i.e. felling, logging, etc.) were not considered since it was assumed that they do not vary with the forest transportation alternatives. As a result of the transportation plan developed for high load capacity truck, the annual transportation cost decreased by 46.85% comparing to the local logging trucks with low load capacity. Using improved road standards, the total road costs computed for the time period of 30 years (i.e. the average expected life cycle of forest roads) were reduced by 4.64%. The total net profit of forest products transported by using a high load capacity truck was 473,340 Euro more than that of using low load capacity truck on the existing forest road network. Thus, improving road standards might result in some additional costs in the road construction stage, but total net profit of forest products increase since transportation costs along with maintenance and repair costs considerably decrease in the long term.

Efficiency of Different Anti-Dust Agents in Reducing Dust Emission from Forest Road and Deposition on Leaf Surface

volume: 42, issue:

Dust is often generated from the dry surfaces of unpaved forest roads as a result of vehicular traffic. Dust particles can negatively affect vegetative growth, water quality and road traffic quality. In this study, some environmental friendly anti-dust agents including sugar cane molasses, polyacrylamide (PAM) and bentonite were used to control dust emission from the road surface under three different concentrations within the 3, 9, 27 and 81 day timeframe. Rear-mounted spray system and dustometer devices were used for implementation of treatments and dust emission recording, respectively. Leaf samples were collected from trees adjacent to road to measure the dust deposited on the leaves by centrifuging dust solution. The results showed that molasses achieved higher efficiencies in term of dust reduction and cost effectiveness than those of PAM and bentonite in Loveh forest, where high levels of fines are present in the road surface materials. 2% and 4% PAM were the most efficient dosages in terms of dust control and cost effectiveness in Shastkalateh and Kouhmian forests, respectively. It was detected that in all sites most of the dust emitted from the road surface was deposited on the leaves of Carpinus betulus L. and Alnus subcordata L., while smooth surface of the leaves retained lower amount of dust in Parrotia persica CAM. It is concluded that the amount of fine aggregates in surfacing materials, type and dosage of anti-dust agent play an important role in the effectiveness and longevity of treatment.

Bearing Capacity Standards for Forest Roads Constructed Using Various Technologies from Mechanically and Chemically Stabilised Aggregate

volume: 42, issue:

Forest roads are essential for adequate forest management and environmental protection. They enable tourism and recreation activity, while at the same time playing a very important role in fire protection. When open to the local traffic, they significantly supplement the public traffic networks. Costs of constructing permanent roads in forested areas are considerable, because they need to have adequate bearing capacity. Forest roads are predominantly constructed using natural or anthropogenic aggregate stabilised mechanically and chemically. A tangible parameter verifying the proper construction of road structure is provided by its bearing capacity, i.e. the capacity of the pavement to carry loads generated by traffic without excessive strains hindering normal use of the pavement or reducing its durability. Some forest road networks are also constructed as temporary roads composed of cheaper aggregates. It seems reasonable to assume different bearing capacity standards for such roads than for permanent roads.

The aim of the studies presented in this paper was to develop bearing capacity standards for forest roads constructed using various technologies. The adopted research hypothesis assumes that each of the analysed technologies is characterised by a different bearing capacity required during road construction inspections. An example of such a structure may be provided by the so-called geotextile mattress and crushed stone constructed on wetland soils. When developing the standards, the analyses included the predicted traffic intensity, assumed operation time before rehabilitation is required, soil conditions and the type of construction material.

Bearing capacity of the testing road sections was assessed based on values of strain moduli calculated from the static plate load tests (VSS). As a result, bearing capacity standards were obtained for structures constructed using aggregates and chemical stabilisers as well as geotextiles potentially facilitating reduction of the layer thickness without deterioration of road durability.

Technical and Environmental Impacts of Coal Waste Used as a Soil Stabilizer in Construction Projects of Forest Roads

volume: 42, issue:

Many pozzolans are waste products from industrial processes. Every year a huge amount of coal waste is gathered from the coal washing plant in the Hyrcanian forests of Iran. These materials can be used for soil stabilization in construction and maintenance projects of forest roads. This paper aims to (a) investigate the role of coal waste (CW) as a soil stabilizer and (b) determine the changes in soil specification regarding the environmental pollution in different combinations of materials (soil, lime (4 and 6%) and CW (3, 6, 9 and 12%)). For this purpose, different technical and environmental analysis and laboratory tests were performed. Technical tests showed that the soil liquid limit and maximum dry density decreased with an increase in lime and CW contents. Addition of CW could increase the soil CBR, UCS and OMC. According to XRD test, the addition of CW and lime can increase the size of crystals in stabilized soil samples. Environmental analysis showed that the use of stabilizer significantly reduced the concentration of heavy metals such as Cd, Cr and Pb. Also, all of the metal concentrations leached from samples satisfied the required criteria, but the addition of lime and CW increased the concentration of N, P, and K. These changes can increase the invasive species consistent with calcareous soil conditions along the roads. According to the results, the combination of coal waste and lime can be one of the best methods for in situ remediation. It would, however, be better to use a minimum amount of stabilizer in pavement layers of access roads due to environmental sensitivity.

Essential Issues Related to Construction Phases of Road Networks in Protected Areas: A Review

volume: 43, issue:

Protected areas play an active role in protecting natural resources and wildlife habitat. These areas must be accessible within protection-use balance. For this reason, road networks in protected areas are one of the main functions of sustainable infrastructure services. The construction phases of road networks in these sensitive areas should be considered in planning within the balance of protection-use with interdisciplinary studies. Especially during the construction of the road network, it is necessary to pay attention to the construction machinery used, geotextile materials, hydraulic and ecological road structures, plantation of the slopes, fences that increase the visual quality and work schedule. Based on a related literature survey, the issues to be considered during the construction phases of road networks (i.e. road planning, tree felling and removing, excavation and embankment, subgrade finishing, road structures and surfacing) in protected areas were evaluated under nine headings. The implementation phases of these issues are important in reducing the adverse effects that will occur in protected areas. In this regard, during the construction phases of road networks, the issues to be considered were evaluated together with the conceptual indicators in terms of management, technique, economy, ecology, and aesthetics. Matters needing attention according to the sensitivity of conceptual indicators during the construction phases of road networks in and around protected areas that contain sensitive ecosystems have been identified and presented in a framework to further the discussions on this issue. Accordingly, the use of the issues to be considered in the planning and construction of road networks with conceptual indicators will help evaluate the planning phase before and after construction. In particular, it can be expected to lead to the creation of a checklist after the planning phase. Thus, the continuity of the issues to be considered during the maintenance, repair, and construction phases of the new road networks or existing road networks planned to be built in a protected area and surrounding areas will provide significant contributions to the functions of the protected areas. The main contributions may include increasing the number of visitors to the protected areas, reducing impacts on wildlife in protected areas by implementing innovative technologies, and developing alternative modes in tourism industry.

Potential Evaluation of Forest Road Trench Failure in a Mountainous Forest, Northern Iran

volume: 43, issue:

After road construction in steep and mountainous areas, there is always a risk for trench failure. Estimation of this probability before forest road design and construction is urgent. Besides, to decrease failures costs and risks, it is necessary to classify their occurrence probabilities and identify the factors affecting them. The present study compares three statistical models of logistic regression, frequency ratio, and maximum entropy. The robust one was applied to generate trench failures susceptibility map of forest roads of two watersheds in Northern Iran. Also, all failures repairing costs were estimated, and subsequently, all existing roads were surveyed in the study area, detecting 844 failures. Among the recorded failures, 591 random cases (70%) were used in modeling, and others (30%) were used as validation data. The digital layers, including failure locations, were prepared. Three failure susceptibility maps were simulated using the outputs of the mentioned methods in the GIS environment. The resulted maps combined with repair cost prices were analyzed to statistically evaluate the repair cost unit per meter of forest road and per square meter of failure. The results showed that the logistic regression model had an Area Under Curve (AUC) of 74.6% in identifying failure-sensitive areas. The probabilistic frequency ratio and Entropy models showed 68.2 and 65.5% accuracy, respectively. Based on the logistic regression model, the distance to faults and terrain slope factors had the highest effects on forest road trenches failures. According to the result, about 43.25% of the existing road network is located in »high« and »very high« risky areas. The estimated cost of regulating and profiling trenches and ditches along the existing roads was approximately 108,772 $/km.

Determination of Optimal Distribution and Transportation Network (Wood Transportation in Iran)

volume: 43, issue:

Today, transportation network optimization has become one of the significant aspects of supply chain planning, and even a slight rise in productivity can significantly reduce costs of distribution of wood in the transportation network. In the forest based industry, given that transportation is the main cost of raw wood supply, using transportation planning, distribution should be done in a way so as to minimize the overall wood displacement. Such planning must meet the needs of all demand centers and the distribution supplier points must be used to their full capacity. Accordingly, the present study strived to find an optimal solution for transportation and distribution of raw wood from the main supplier points to small and large centers of wood and paper industries in Iran. This optimization simultaneously focuses on several products and is at the macroeconomic level of the country wood market. To achieve this goal, linear programming – Transportation Simplex Algorithm was used. The results show a significant fall in transportation costs and a more organized wood distribution network than the current situation. This cost reduction can be attributed to decisions about the optimal distribution of wood types, determining transport routes, and opting for the right type of truck supplier based on load tonnage and distance. This plummet in transportation costs plunges the cost of wood and wood products, which will surge competition in the business and will be of interest to manufacturers, distributors, customers and stakeholders in general.

Use of UAV Data and HEC-RAS Model for Dimensioning of Hydraulic Structures on Forest Roads

volume: 44, issue:

In terms of engineering standards, the dimensions of hydraulic structures such as culverts on forest roads should have the capability to drain the expected maximum discharge for a 50-year return period during their lifespan (i.e., 20 years). In Turkey, Talbot’s formula, as empirical method, has commonly been used in determining the required cross-sectional area (CSA) of the structures. However, in practice, forest road engineers in Turkey do not pay enough attention to their construction with required dimensions calculated by Talbot’s formula. In the present study, the Hydrological Engineering Centre – River Analysis System (HEC-RAS) model was used to evaluate the dimensions of installed structures in terms of their ability to drain maximum discharges, with the aim of determining the required dimensions for those that could not meet this requirement. To this purpose, the 6+000 km forest road No. 410 in Acısu Forest Enterprise, Gerede Forest Directorate (Bolu, Turkey) was selected as the study area. In total, 15 small watersheds crossed by the forest road were delineated, with only six of them having cross-drainage structures. The HEC-RAS model geometry was generated by manual unmanned aerial vehicle (UAV) flights at altitudes of 5–15 m, providing very high spatial resolution (<1 cm). The maximum discharges of the watersheds were estimated for the HEC-RAS model using the Rational, Kürsteiner, and Soil Conservation Service-Curve Number (SCS-CN) methods. Maximum discharges of 0.18–6.03 were found for the Rational method, 0.45–4.46 for the Kürsteiner method, and 0.25–7.97 for the SCS-CN method. According to the HEC-RAS hydraulic model CSA simulations, most of the installed culvert CSAs calculated by Talbot’s formula were found to be incapable of draining maximum discharges. The study concluded that the HEC-RAS model can provide accurate and reliable results for determining the dimensions of such structures for forest roads.

Evaluation of Morphometric Terrain Parameters and Their Influence on Determining Optimal Density of Primary Forest Road Network

volume: 44, issue:

Planning forest truck roads network involves a lot of factors that directly affect their density and length. Depending on the purpose of the forest truck road network, this number is higher or lower. Our opinion was that these factors should be divided into invariable and variable. Common parameters, regardless of the purpose of the roads, are morphometric parameters because they can limit the length and density of the network of forest truck roads due to their variety of forms. For this reason, this paper deals exclusively with the morphometric characteristics of the terrain and their influence on the density of the network of forest truck roads. The DEM of the terrain was processed with GIS software based on the seven most important influencing factors. By standardizing the criteria, the obtained maps were reclassified, and then each of the seven selected parameters was weighted with the coefficients obtained by the AHP method.

In this way, a map of the suitability of the terrain for the construction and addition to the existing network of forest truck roads was obtained. The terrain is divided into 4 categories of suitability. Zero lines were drawn with GIS tools for road design. During the creation of the optimal road network, it was tested with absolute and relative openness.

As a final result, each of 26 Forest Economic Areas (FEA) was assigned to one of 4 categories of terrain suitability for the construction and density of the forest truck road network. For each category of terrain convenience, the optimal absolute and relative openness is shown. Based on this work, we suggest that the use of morphometric parameters should be considered as the first step of forest road planning in other regions.

Evaluation of Light Falling Weight Deflectometer for In Situ Measurement of Secondary Deformation Modulus of Various Forest Road Pavements

volume: 44, issue:

Roads in forests are necessary for proper forest management and active protection of the natural environment. They facilitate tourism and recreation and have a very important function in firefighting. The cost of building roads in forest areas is considerable, even when relatively cheap materials such as aggregates of natural or anthropogenic origin are used. Therefore, any road investment must be well prepared and executed. Bearing capacity and compaction are among the most important and frequently used geotechnical parameters in road construction. The aim of this study was to determine the possibility of predicting the value of the secondary deformation modulus E2 (obtained from measurements with a static plate load test – PLT) based on measurements with a light falling weight deflectometer (LFWD) Zorn, type ZFG 3000 GPS with a drop weight of 10 kg. The regression analysis included 245 results of bearing capacity measurements carried out on 46 forest road sections with various road pavements. Different regression models were tested: linear, logarithmic, polynomial, exponential and power models, excluding polynomials of fourth and higher degree. Prediction of E2 (PLT) values from dynamic deformation modulus Evd (LFWD) values is possible. However, the reported unsatisfactory strength of the relationship between the two parameters is associated with a high risk of error (r=0.73, R2=0.54, Se=80.37 MN·m-2). Neither the use of more complex non-linear regression models nor the use of multiple regression by introducing an additional estimator in the form of the s/v ratio significantly improved the estimation results. The quality of the prediction of E2 values is not constant. It varies depending on the type of forest road pavements, the use of geosynthetic pavement reinforcements and the type of road subgrade. The study also found that the quality of E2 prediction can be improved by limiting the range of tested Evd values upwards. It is advisable to continue this type of research, as the results obtained could be the basis for developing national standards for the application of LFWD to control the bearing capacity and compaction of forest road surfaces in the future.

Infrastructure Requirements for Clear-Fell Harvesting of Small-Scale Plantation Forests in New Zealand

volume: 45, issue:

Background: Small-scale forests (woodlots) increasingly account for a greater proportion of the total annual harvest in New Zealand. There is limited information on the extent of infrastructure required to harvest a woodlot; road density (trafficable with log trucks), landing size, or the average harvest area that each landing typically services.

Methods: This study quantified woodlot infrastructure averages and evaluated influencing factors. Using publicly available aerial imagery, roads and landings were mapped for a sample of 96 woodlots distributed across the country. Factors such as total harvest area, average terrain slope, length/width ratio, boundary complexity and extraction method were recorded and investigated for correlations.

Results: The average road density was 25 m/ha, landing size was 3000 m2 and each landing was serviced on average 12.8 ha. Notably, 15 of the 96 woodlots had no internal infrastructure, with the harvest completed using roads and landings located outside of the woodlot boundary. Factors influencing road density were woodlot length/width ratio, average terrain slope and boundary complexity. Landing size was influenced by average terrain slope, woodlot length/width ratio, and woodlot area.

Conclusion: The results provide a contemporary benchmark of the current infrastructure requirements when harvesting a small-scale forests in New Zealand. These may be used at a high level to infer the total annual infrastructure investment in New Zealand’s woodlot estate and also project infrastructure requirements over the foreseeable future.

Using Cyclic CBR Method to Determine Resilient Modulus of Hydraulic Binder Stabilised Road Pavement Base Layers

volume: 45, issue:

The mechanistic-empirical (E-M) design of pavement structures requires knowledge of the elastic modulus of the layers comprising the structure. The necessary cyclic (dynamic) triaxial testing is expensive and cumbersome for low-volume forest and agricultural roads. Opiyo (1995) developed a method called cyclic CBR (cCBR) to determine the resilient modulus (Mr) of granular road construction materials using CBR testing equipment. The present study tested the cCBR method on silty, fine sand stabilised with lime and a lime-cement mixture. For the test, 24 test specimens were prepared by adding 3, 5 and 7% pure lime and a 70–30 lime-cement mixture at the targeted 8–23% water content. Three metrics were used to express the bearing capacity of the specimens: (1) the commonly used CBR% value, (2) the Mr value calculated as a function of load force and elastic deformation determined as a result of the cCBR test, and (3) the resilient modulus calculated from the CBR value. The experimental results showed that the initial water content had a greater effect on the bearing capacity than the binder dosage. The present study found the cCBR procedure to be feasible. The test results were converted to a resilient modulus value using the formula developed by Opiyo and Molenaar, respectively. The calculated resilient modulus values from the CBR value exhibited a wide variation. Uzan’s formula provided similar results to those calculated by Molenaar’s formula. A 250 m long experimental road section was also constructed to verify the laboratory data. Based on the laboratory tests, five different 50 m long stabilisation layers were built. The bearing capacity data measured with the handheld BC-1 LFWD and KUAB-FWD equipment verified Molenaar’s formula.

Development of a Sustainable Maintenance Strategy for Forest Road Wearing Courses in Different Climate Zones

volume: 45, issue:

This study was done to determine the appropriate maintenance strategies for the deteriorating gravel forest roads in the Mediterranean, sub-humid and semi-arid climates. Unmanned Aerial Vehicle (UAV) was used to monitor Unpaved Road Condition Index (UPCI), immediately after maintenance activities and seasonally in one year. The deterioration time of the wearing course was predicted using Markov chain analysis. Results showed that roads in sub-humid climates presented lower UPCI (7.19) compared to the Mediterranean (7.81) and semi-arid (8.82) climates. When roads were maintained by a high-budget strategy, deterioration time was longer than when other strategies were used. The cost-effectiveness (CE) value of the low-budget strategy was more favorable than different strategies in all traffic levels of the Mediterranean climate and high-traffic roads in a semi-arid environment. Low-budget maintenance activities include one culvert improvement per 6 km, light blading, and 30 mm layer graveling. In a semi-arid climate, a medium-budget maintenance strategy was more efficient in medium and low-traffic roads. Medium, high, and low-budget maintenance strategies were efficient in high, medium, and low-traffic roads in sub-humid climates. High-budget maintenance activities include one culvert improvement per 4 km, heavy blading and local compaction, and 60 mm layer graveling. Overall, it was concluded that monitoring UPCI over time and probability analysis using time series is helpful for a sustainable and long-term management of forest roads.

A Meta-Analysis to Evaluate the Reliability of Depth-to-Water Maps in Predicting Areas Particularly Sensitive to Machinery-Induced Soil Disturbance

volume: 45, issue: 2

The careful planning of the extraction routes is one of the most important best management practices to limit soil disturbance related to ground-based forest operations. Over the recent years, this task has been commonly addressed in the framework of boreal forestry, by developing soil trafficability maps based on the depth-to-water (DTW) topographic index. The basic concept of trafficability maps developed with the DTW index is that soils at low DTW index, namely <1, could be more prone to soil compaction and rutting as they tend to have higher moisture content. However, previous studies that tried to assess the reliability of these maps reported contrasting results. Therefore, the present meta-analysis was developed to evaluate if soils at low DTW index (≤1) are actually more sensitive to soil compaction and rutting than soils at higher DTW index (>1). A database was created containing all the studies that assessed soil compaction and rutting in soils at low DTW index (experimental treatment) and high DTW index (control treatment), and a multivariate meta-analysis was used to check the presence of statistically significant effect size. Then the influence on the effect size of variables like soil texture, number of machine passage and weight of the machine, was checked by applying sub-group meta-analysis and meta-regression. Finally, a sensitivity analysis was performed by removing possible outliers from the database and repeating the analyses. No statistical differences were found in soil compaction and rutting severity in areas at low DTW index in comparison to the control areas (DTW index ≥1). The results showed that soil texture, number of machine passage and weight of the machine did not have a significant influence on the effect size. The sensitivity analysis developed after removing outliers from the database fully confirmed the obtained results. Thus our meta-analysis showed that the DTW index in its current form is not a fully reliable predictor of soil areas that could be particularly sensitive to machinery-induced disturbance. It is therefore recommended to use the DTW index to create trafficability maps, always taking into account that the results of the algorithms should be validated in the field before starting harvesting operations.

A Meta-Analysis to Evaluate the Reliability of Depth-to-Water Maps in Predicting Areas Particularly Sensitive to Machinery-Induced Soil Disturbance

volume: issue, issue:

The careful planning of the extraction routes is one of the most important best management practices to limit soil disturbance related to ground-based forest operations. Over the recent years, this task has been commonly addressed in the framework of boreal forestry, by developing soil trafficability maps based on the depth-to-water (DTW) topographic index. The basic concept of trafficability maps developed with the DTW index is that soils at low DTW index, namely <1, could be more prone to soil compaction and rutting as they tend to have higher moisture content. However, previous studies that tried to assess the reliability of these maps reported contrasting results. Therefore, the present meta-analysis was developed to evaluate if soils at low DTW index (≤1) are actually more sensitive to soil compaction and rutting than soils at higher DTW index (>1). A database was created containing all the studies that assessed soil compaction and rutting in soils at low DTW index (experimental treatment) and high DTW index (control treatment), and a multivariate meta-analysis was used to check the presence of statistically significant effect size. Then the influence on the effect size of variables like soil texture, number of machine passage and weight of the machine, was checked by applying sub-group meta-analysis and meta-regression. Finally, a sensitivity analysis was performed by removing possible outliers from the database and repeating the analyses. No statistical differences were found in soil compaction and rutting severity in areas at low DTW index in comparison to the control areas (DTW index ≥1). The results showed that soil texture, number of machine passage and weight of the machine did not have a significant influence on the effect size. The sensitivity analysis developed after removing outliers from the database fully confirmed the obtained results. Thus our meta-analysis showed that the DTW index in its current form is not a fully reliable predictor of soil areas that could be particularly sensitive to machinery-induced disturbance. It is therefore recommended to use the DTW index to create trafficability maps, always taking into account that the results of the algorithms should be validated in the field before starting harvesting operations.


Web of Science Impact factor (2022): 3.200
Five-years impact factor: 3.000

Quartile: Q1 - Forestry

Subject area

Agricultural and Biological Sciences